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LAPLACE TRANSFORM OF PRODUCTS OF BESSEL FUNCTIONS:

A VISITATION OF EARLIER FORMULAS

By

EDUARDO KAUSEL (Professor of Civil and Environmental Engineering,
Massachusetts Institute of Technology, Cambridge MA 02139)

and

MIRZA M. IRFAN BAIG (Simpson, Gumpertz & Heger Inc., Waltham MA 02453)

Abstract. This note deals with the Laplace transforms of integrands of the form

xλJα (ax) Jβ (bx), which are found in numerous fields of application. Specifically, we

provide herein both a correction and a supplement to the list of integrals given in 1997

by Hanson and Puja, who in turn extended the formulas of Eason, Noble and Sneddon

of 1956. The paper concludes with an extensive tabulation for particular cases and range

of parameters.

1. Introduction. In a classic 1956 paper, Eason, Noble and Sneddon – henceforth

ENS for short – presented a general methodology for finding integrals involving products

of Bessel functions, and provided a set of closed-form formulas for cases commonly en-

countered in engineering science and in applied mathematics. Although these integrals

extended considerably the repertoire of exact formulas available in standard tables such

as Oberhettinger’s or Gradshteyn & Ryzhik’s, even to this day programs such as Math-

ematica, Maple and Matlab’s symbolic tool seem to have remained unaware of the ENS

paper, for they are unable to provide answers to such integrals. Some four decades later,

Hanson and Puja (1997) – henceforth denoted as HP – reconsidered the ENS paper and

not only extended considerably the formulas therein, but by changing the arguments to

the functions, they arrived at alternative forms which allegedly avoided discontinuities at

certain values of the parameters. Unfortunately, once the arguments in the HP formulas

exceed some threshold value, the computations for some of the integrals suffer a com-

plete breakdown and become useless. This led us to investigate both the reasons for the

erroneous results and also seek a corrected set of formulas, which constitutes the subject

of this paper.

To avoid repetitions, the presentation herein will be rather terse, avoiding needless

explanations of well-known facts and/or of details which can be found in the originals of

the papers referred to. Also, to distinguish clearly between the equations and parameters
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2 EDUARDO KAUSEL AND MIRZA M. IRFAN BAIG

used by ENS and HP, we have adopted a revised, more general notation. We defer a

description of the problem itself until section 5 so as to summarize first some needed

preliminary definitions and properties.

2. Laplace transform and its properties. The integrals in question are the Laplace

transforms

Iλαβ ≡ Iλαβ (a, b, s) =

∫ ∞

0

xλJα (ax)Jβ (bx) e
−sx dx (2.1)

with

α+ β + λ > −1 if s > 0

α+ β + 1 > −λ > −1 if s = 0 & a ̸= b

α+ β + 1 > −λ > 0 if s = 0 & a = b

where the parameters α, β, λ are assumed to be integers and the arguments a, b, s are

real. These integrals satisfy the following symmetries and recursive properties:

Iλαβ (a, b, s) = Iλβα (b, a, s) Iλαβ (a, b, s) =

{ (
1
b

)λ+1
Iλαβ

(
a
b , 1,

s
b

)(
1
a

)λ+1
Iλαβ

(
1, b

a ,
s
a

) (2.2)

α Iλαβ = 1
2a
(
Iλ+1
α−1,β + Iλ+1

α+1,β

)
β Iλαβ = 1

2b
(
Iλ+1
α,β−1 + Iλ+1

α,β+1

)
(2.3)

∂Iλαβ
∂a

= 1
2

(
Iλ+1
α−1,β − Iλ+1

α+1,β

) ∂Iλαβ
∂b

= 1
2

(
Iλ+1
α,β−1 − Iλ+1

α,β+1

)
(2.4)

Combination of two of the above yields

∂Iλαβ
∂a

= Iλ+1
α−1,β − α

a
Iλαβ

=
α

a
Iλαβ − Iλ+1

α+1,β

∂Iλαβ
∂b

= Iλ+1
α,β−1 −

β

b
Iλαβ

=
β

b
Iλαβ − Iλ+1

α,β+1

(2.5)

In addition,

Iλαβ = −
∂Iλ−1

αβ

∂s
(2.6)

It can also be shown via integration by parts that

(α+ β − λ) Iλ−1
αβ = a Iλα−1,β + b Iλα,β−1 − s Iλαβ +

[
xλJα (ax)Jβ (bx)

]
x=0

λ Iλ−1
αβ = a1

2

(
Iλα+1,β − Iλα−1,β

)
+ b 12

(
Iλα,β+1 − Iλα,β−1

)
+ s Iλαβ −

[
xλJα (ax) Jβ (bx)

]
x=0

(2.7)

provided α + β + λ ≥ 0. The boundary term at x = 0 vanishes if α + β + λ > 0. For

example, if λ = 0, α = β = 1, then

I−1
11 = 1

2

(
a I00,1 + b I01,0 − s I011

)
(2.8a)

0 = 1
2 a
(
I02,1 − I00,1

)
+ 1

2 b
(
I01,2 − I01,0

)
+ s I01,1 (2.8b)

both of which can be useful.
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3. Definitions, parameters and fundamental relations.

A = A (a, b, s) =

√
(a+ b)

2
+ s2, B = B (a, b, s) =

√
(a− b)

2
+ s2 (3.1)

L1 = L1 (a, b, s) =
1
2 (A−B) , L2 = L2 (a, b, s) =

1
2 (A+B) (3.2)

κ =
2
√
L1L2

L1 + L2
=

2
√
ab√

(a+ b)
2
+ s2

=
2
√
k

1 + k
(3.3)

κ′ =
√
1− κ2 =

B

A
=

√
(a− b)

2
+ s2√

(a+ b)
2
+ s2

=
1− k

1 + k
(3.4)

k =
L1

L2
=
ab

L2
2

=
L2
1

ab
=

1− κ′

1 + κ′
(3.5)

k′ =
√
1− k2 =

2
√
AB

A+B
=

2
√
κ′

1 + κ′
(3.6)

ν =
4ab

(a+ b)
2 , nab =

L2
1

b2
=
a2

L2
2

=
a

b

L1

L2
= k

a

b
, nba =

L2
1

a2
=
b2

L2
2

=
b

a

L1

L2
= k

b

a
(3.7)

with

κ2 < ν < 1, k2 < nab < 1, k2 < nba < 1, nabnba = k2 (3.8)

These parameters satisfy the following useful relationships:√
ν − κ2 =

sκ

a+ b
,

√
1− ν =

|a− b|
a+ b

,

√
(1− ν) (ν − κ2)

ν
=

|a− b|
a+ b

s

L2 (1 + k)

(3.9)

L1 = 1
2 (1− κ′)

√
(a+ b)

2
+ s2

=
1− κ′

κ

√
ab

,
L2 = 1

2 (1 + κ′)

√
(a+ b)

2
+ s2

=
1 + κ′

κ

√
ab

(3.10)

(L1 + L2)
2
= (a+ b)

2
+ s2, (L2 − L1)

2
= (a− b)

2
+ s2 (3.11)

L2
1 + L2

2 = 1
2

(
A2 +B2

)
= a2 + b2 + s2, L2

2 − L2
1 = AB = L2

2

(
1− k2

)
= 4ab

κ′

κ2

(3.12)

L1L2 = 1
4

(
A2 −B2

)
= ab, L4

2 = L2
2

(
a2 + b2 + s2

)
− a2b2 (3.13)

ka− b =
s2ka

L2
1 − a2

=
s2b

b2 − L2
2

,
s2

a2 − L2
1

=
1

nab
− 1,

s2

L2
2 − a2

= 1− nba (3.14)

kb− a =
s2kb

L2
1 − b2

=
s2a

a2 − L2
2

,
s2

b2 − L2
1

=
1

nba
− 1,

s2

L2
2 − b2

= 1− nab (3.15)
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4. Elliptic integrals. All of the transforms considered in this work result in formulas

involving the complete elliptic integrals of the first, second and third kind. In addition,

ENS introduce a Λ function which coincides with Heuman’s Lambda Naught function

multiplied by 1
2π. In the ensuing, we use κ, ν for the ENS arguments and k, n for the HP

arguments to the elliptic integrals. These functions and their mathematical properties

are:

K (κ) =

∫ 1

0

dx√
1− x2

√
1− κ2x2

=

∫ π/2

0

dθ√
1− κ2sin2θ

1stkind (4.1)

E (κ) =

∫ 1

0

√
1− κ2x2 dx√

1− x2

=

∫ π/2

0

√
1− κ2sin2θ dθ

2ndkind (4.2)

Π (ν, κ) =

∫ 1

0

dx

(1− ν x2)
√
1− x2

√
1− κ2x2

=

∫ π/2

0

dθ(
1− ν sin2θ

)√
1− κ2sin2θ

3rdkind (4.3)

Λ (ν, κ) =

√
(1− ν) (ν − κ2)√

ν
Π (ν, κ) ≡ π

2Λ0 (ψ\ϑ)

= [E (κ)−K (κ)]F (ψ\ϑ′) +K (κ)E (ψ\ϑ′)
(ENS–3.8) (4.4)

where Λ0 is Heuman’s function, F and E are the incomplete elliptic integrals of the first

and second kind, respectively, and both ϑ = arcsinκ, ψ are defined by the unnumbered

equations above ENS-3.8

sin2ψ =
ν − κ2

νκ′2
, cos2ψ =

κ2 (1− ν)

νκ′2
(4.5)

We also define

Πab ≡ Π (nab, k) , Πba ≡ Π (nba, k) (4.6)

with nab, nba given by 3.7.

Landen transformation:

k =
1− κ′

1 + κ′
, K (k) = 1

2 (1 + κ′)K (κ) , E (k) =
1

1 + κ′
[E (κ) + κ′K (κ)] (4.7)

κ =
2
√
k

1 + k
, K (κ) = (1 + k)K (k) , E (κ) =

2

1 + k
E (k)− (1− k)K (k) (4.8)

In Appendix A we also show that

Λ (ν, κ) =
s

L2
[2Π (nab, k)−K (k)] a < b

=
s

L2
[2Π (nba, k)−K (k)] a > b

(4.9)
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Caveat: Users of advanced software such as Mathematica, Maple and Matlab should

beware the arguments being used by the elliptic functions in these programs, for the

manuals are not crystal clear about the matter. Specifically, in Mathematica the func-

tions EllipticK and EllipticE use m = k2 as argument, i.e. the so-called parameter,

while the same-named functions in Maple and in Matlab’s symbolic tool use instead the

modulus k. To add to the confusion, Matlab’s intrinsic numerical function ellipke also

uses the parameter m instead of the modulus k and restricts it to be real and less than

unity. In the case of multiple solutions for the Laplace transforms, Matlab often gives

only one of these, and also remains silent about some of the underlying assumptions (e.g.

a < b = 1 and so forth).

5. Description of the problem. Consider the particular case of the transform I−1
11 .

From ENS-4.9, this integral is

I−1
11 =

s

π
√
ab

[
1

κ
E (κ)− κ

2ab

(
a2 + b2 + 1

2s
2
)
K (κ)

]
+
a2 − b2

2π ab
sgn (a− b) Λ (ν, κ)

+
1

2


b
a a > b

1 a = b
a
b a < b

(5.1a)

which can be written compactly as

I−1
11 =

s

π
√
ab

[
1

κ
E (κ)− κ

2ab

(
a2 + b2 + 1

2s
2
)
K (κ)

]
+

1

4ab

{
a2 + b2 +

(
a2 − b2

)
sgn (a− b)

[
2
πΛ (ν, κ)− 1

]} (5.1b)

whereas from HP-25, this same integral is

I−1
11 =

a

2b
+

s

πabL2

[
L2
2 E (k)−

(
L2
2 + b2

)
K (k)−

(
a2 − b2

)
Π (n, k)

]
(5.2)

the characteristic n of which coincides with our nab in eq. 3.7. Observe that HP-25

consists of a single expression for the transform whatever the relative values of a, b, and

also uses different arguments and coefficients for the elliptic integrals, while ENS-4.9

exhibits an intrinsic discontinuity at the transition a = b for all values of s. Regrettably,

although the HP expression is indeed continuous, it is not applicable and fails when

a > b, as will be seen.

Now, HP developed their formulas in the context of a problem in the theory of elasticity

concerning a circular load (i.e. “patch”) applied onto an elastic half-space and thus they

argued for the continuity of the functions on physical grounds. Quoting HP (square

brackets are ours):

It is apparent that when the integral evaluation does not contain Heuman’s

Lambda function, only one expression is needed to evaluate the integral

for all values of the parameters. However, when the integral evaluation

also contains Heuman’s Lambda function, two different expressions are

given for the integral depending on the relative values of [a, b]. Since
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the elastic field inside the half-space is continuous and has continuous

derivatives, it is troublesome that the expressions are different depending

on being inside or outside the radius of loading. Intuition would lead

one to expect a single expression which is valid at every point in the half

space.

Unfortunately, this appeal to physical continuity did not guarantee that the replacement

formulas proposed by HP would be correct, for they actually provide spurious results

when applied for a > b. As it turns out, two separate formulas are needed for the intervals

a < b and a > b which, although distinct, maintain the continuity of the solution and

its derivative at a = b. In the ensuing, we establish the correct mathematical connection

between the ENS and HP formulas and provide an extended set of formulas which are

free from this problem.

6. Relationship between ENS and HP. HP provide a transformation formula

HP-24 between the complete elliptic integral of the third kind with arguments ν, κ and

the elliptic integrals with arguments n, k. In our current notation and after some simple

transformations, their transformation formula would read

Π (ν, κ) =
(1 + k) (a+ b)

a− b

{
πL2

s
H (a− b) +K (k)− 2Π (n, k)

}
(6.1)

which can also be written as

sgn (a− b) Λ (ν, κ) = πH (a− b) +
s

L2
[K (k)− 2Π (n, k)] (6.2)

where H (a− b) is the Heaviside function, and n ≡ nab. They state that the proof of this

formula is contained in an earlier paper of theirs, but we have been unable to locate any

such derivation in said paper. Furthermore, that equation holds no obvious connection

to the Landen-Gauss transformation 163.02 given on page 39 in Byrd and Friedman

(1971), which appears to be restricted to the ”hyperbolic” case n < k2 and thus excludes

the ”circular” case at hand k2 < n. For this reason, we provide a new proof of the

HP translation formula in Appendix A, and in the process show that another formula is

needed when a > b. With reference to Appendix A, the actual transformation formulas

are:

Λ (ν, κ) =
s

L2
(2Πab −K (k)) a < b (6.3a)

Λ (ν, κ) =
s

L2
(2Πba −K (k)) a > b (6.3b)

As also demonstrated in Appendix A, Πab and Πba satisfy the relationship

Πab +Πba −K =
πL2

2s
(6.4)
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Taking into account this property, the two transformation formulas 6.3a,b can be com-

bined into a single expression by means of Heaviside functions as follows:

Λ (ψ, κ) =
s

L2
{ 2Πab [1−H (a− b)] + 2ΠbaH (a− b)−K}

=
s

L2

{
2Πab [1−H (a− b)] + 2

[
πL2

2s
−Πab +K

]
H (a− b)−K

}
= πH (a− b) + sgn (a− b)

s

L2
(K− 2Πab)

(6.5)

so

sgn (a− b) Λ (ψ, κ) = πH (a− b) +
s

L2
(K− 2Πab) (6.6)

which does coincide with HP’s translation formula 6.2. Although this shows 6.2 to be

technically correct, HP’s integral transform formulas are still incorrect when a > b.

This is because in their final expressions for the integrals, they failed to include the

Heaviside term, which is absent when a < b, and simply assumed that the resulting

formulas for that case would be valid throughout, i.e. they reasoned that the formulas

had to be ”continuous”. In addition, Πab is ill-conditioned when a > b. In retrospect, it

seems peculiar that HP should have argued against the discontinuous Lambda function

in ENS, only to replace it with yet another discontinuous function and then ”forgot” –

or proceeded to deliberately ignore – this very discontinuity.

Fortunately, to circumvent this problem, it suffices to make use of 6.4 and replace Πab

in all HP formulas by Πab = K (k) − Πba + π
2sL2 whenever a > b . This is possible

because for all a, b, s > 0, k < 1, nab < 1, nba < 1, in which case 6.4 has no singularities

and is a continuous function of the ratio a/b, even if 6.4 itself remains intrinsically ill-

conditioned because either Πab or Πba attains large values, especially when s is small.

This is because for a > b, nab → 1, and Πab → ∞, and vice-versa for Πba.

To demonstrate the application of the preceding transformation formulas, substitute

6.3a into the ENS form 5.1, and consider also the equivalences 4.16, which yields

I−1
11 =

s

π
√
ab

{
1 + κ′

κ
E (k)− 2

κ (1 + κ′)

[
κ′ +

κ2

4ab

(
2a2 + 2b2 + s2

)]
K (k)

}
+

s

πL2

a2 − b2

2 ab
(K (k)− 2Πab) +

a

2b

(6.7)

Using the definitions for k, κ and other parameters in section 3, it can be shown that

2

κ (1 + κ′)

[
κ′ +

κ2

4ab

(
2a2 + 2b2 + s2

)]
=

1√
abL2

[
L2
2 +

1
2

(
a2 + b2

)]
(6.8)

Hence

I−1
11 =

s

πabL2

[
L2
2E (k)−

(
L2
2 + b2

)
K (k)−

(
a2 − b2

)
Πab

]
+

a

2b
, a < b (6.9)

which coincides with HP-25 (i.e. eq. 5.2). On the other hand, making use of eq. 6.3b

instead, we obtain

I−1
11 =

s

πabL2

[
L2
2E (k)−

(
L2
2 + a2

)
K (k)−

(
b2 − a2

)
Πba

]
+

b

2a
, a > b (6.10)
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which agrees perfectly with the formula that would be obtained by simply exchanging

a, b in 6.9, which must hold because of the symmetry of I−1
11 with respect to the Bessel

indices. Finally, if we substitute Πab = K (k) −Πba + π
2sL2 into eq. 6.9, we once more

recover 6.10. Thus, this shows that all is consistent.

7. Tables of integrals. Although many of the integrals listed in the pages that

follow are directly based on the HP and ENS papers, we have seen fit to simplify these

expressions to the extent possible, using for this purpose the very useful equivalences and

properties given in section 3. Hence, they do not quite look like those in HP. This also

meant that each and every formula had to be carefully checked for errors, including tests

against direct numerical integration. Also, since Laplace transforms constitute improper

integrals, it was necessary for us to supplement our numerical quadrature with formulas

for integrating the tails, a task that is presented in Appendix C.

We have made an utmost effort in avoiding mistakes in both the transcription and

proofreading of the typeset document, and believe the formulas to be free from error.

Still, readers are strongly encouraged to carefully verify their own personal implementa-

tion of these formulas, not only to avoid any remaining, hidden errors, but also to avoid

errors that could have crept in during implementation of the formulas from the published

paper.

In addition, some of the integrals could be verified against tabulations such as Ober-

hettinger’s and against Matlab symbolic tool, and we identify the formulas thus checked.

In addition, we have also used the recurrence relations to verify some (but not all) of the

integrals. The reason is that although the recurrence relations involve differentiations

and can in principle be used to reduce the expressions to known integrals, the process

can be very tedious because of the complexity of the derivatives of the elliptic functions.

Indeed, even when the operations are carried out with a computer, say with Matlab, it

is often difficult to collect and factorize terms in the resulting expressions, and thus, to

reduce the formulas into a recognizable form.

Finally, because many of the formulas are discontinuous when either s → 0 or a = b,

we have seen fit to provide separate tables for these cases. By and large, the tables list

the integrals in descending value of λ and in increasing order of the Bessel functions.
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Table 1: Integrals for α = 0, a = 0, s > 0. All of the formulas in this section have

been obtained with Matlab’s symbolic tool.

L2 =
√
b2 + s2

I00β (0, b, s) =

∫ ∞

0

e−sx Jβ (bx) dx =
1

L2

(
b

L2 + s

)β

, β = 0, 1, 2, · · ·

I−1
0β (0, b, s) =

∫ ∞

0

e−sx Jβ (bx)

x
dx =

1

β

(
b

L2 + s

)β

, β = 1, 2, 3, · · ·

I−2
0β (0, b, s) =

∫ ∞

0

e−sx Jβ (bx)

x2
dx =

βL2 + s

β (β2 − 1)

(
b

L2 + s

)β

β = 2, 3, 4, · · ·

I−3
0β (0, b, s) =

∫ ∞

0

e−sx Jβ (bx)

x3
dx

=

[ (
β2 − 1

)
L2
2 + 3s (βL2 + s)

]
β (β2 − 1) (β2 − 4)

(
b

L2 + s

)β

,

β = 3, 4, 5, · · ·

Table 2: Integrals for s = 0, a > 0, b > 0, in dual format.

κ =
2
√
a b

a+ b
≤ 1 k =

{
a
b , a < b
b
a , a > b

I000 (a, b, 0) =

∫ ∞

0

J0 (ax) J0 (bx) dx =
2

π

1

a+ b
K (κ) =

{
2
πbK

(
a
b

)
a < b

2
πaK

(
b
a

)
a > b

I001 (a, b, 0) =

∫ ∞

0

J0 (ax) J1 (bx) dx = 1
b [1−H (a− b)] =

1

b


1 a < b
1
2 a = b

0 a > b

I−1
01 (a, b, 0) =

∫ ∞

0

J0 (ax) J1 (bx)

x
dx =

1

πb
[(a+ b)E (κ)− (a− b)K (κ)]

=
2

π

{
E
(
a
b

)
a < b[(

b
a − a

b

)
K
(
b
a

)
+ a

bE
(
b
a

)]
a > b

I−1
11 (a, b, 0) =

∫ ∞

0

J1 (ax) J1 (bx)

x
dx =

1

2

{
a
b a < b
b
a a ≥ b

I011 (a, b, 0) =

∫ ∞

0

J1 (ax) J1 (bx) dx =
a+ b

πab

[
a2 + b2

(a+ b)
2K (κ)−E (κ)

]

=
2

π


1
a

[
K
(
a
b

)
−E

(
a
b

)]
a < b

∞ a = b
1
b

[
K
(
b
a

)
−E

(
b
a

)]
a > b
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I−2
11 (a, b, 0) =

∫ ∞

0

J1 (ax) J1 (bx)

x2
dx

=
1

3πab

[(
a2 + b2

)
(a+ b)E (κ)−

(
a2 − b2

)
(a− b)K (κ)

]
=

2

3π


1
a

[(
a2 + b2

)
E
(
a
b

)
−
(
b2 − a2

)
K
(
a
b

)]
a < b

2b a = b
1
b

[(
a2 + b2

)
E
(
b
a

)
−
(
a2 − b2

)
K
(
b
a

)]
a > b

Table 3: Integrals for a > 0, b > 0, s > 0, in ENS format. Only the integrals

provided by ENS are included in this table. For a more complete list, see the next table.

κ =
2
√
ab√

(a+ b)
2
+ s2

ν =
4ab

(a+ b)
2

K = K (κ) , E = E (κ) , Λ = Λ (ν, κ) =
|a− b|
a+ b

s√
(a+ b)

2
+ s2

Π (ν, κ)

I100 =
sκ3

4π (1− κ2) ab
√
ab

E (ENS–4.3)

I110 =
κ

2πa
√
ab

[
κ2
(
a2 − b2 − s2

)
4 (1− κ2) ab

E+K

]
(ENS-4.8)

I111 =
sκ

2π ab
√
ab

[(
1− 1

2κ
2

1− κ2

)
E−K

]
(ENS-4.4)

I000 =
κ

π
√
ab

K (ENS-4.1)

I010 = − 1

πa

κs

2
√
ab

K− sgn (a− b)

πa
Λ +

1

a
H (a− b) (ENS-4.7)

I011 =
2

π κ
√
ab

[(
1− 1

2κ
2
)
K−E

]
(ENS-4.2)

I−1
10 =

1

πa

[
2
√
ab

κ
E+

(
a2 − b2

) κ

2
√
ab

K

]
+

s

πa
sgn (a− b) Λ− s

a
H (a− b) (ENS-4.6)

I−1
11 =

s

π
√
ab

[
1

κ
E− κ

2ab

(
a2 + b2 + 1

2s
2
)
K

]
+

1

4ab

{
a2 + b2 +

(
a2 − b2

)
sgn (a− b)

[
2
πΛ− 1

]} (ENS-4.9)
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Table 4: Integrals for a > 0, b > 0, s > 0, in HP format.

A =

√
(a+ b)

2
+ s2, B =

√
(a− b)

2
+ s2, L1 = 1

2 (A−B) , L2 = 1
2 (A+B)

k = L1/L2, nab = k a
b , nba = k b

a , X = checked against

available ENS forms

K = K (k) , E = E (k) , Πab = Π (nab, k) , Πba = Π (nba, k)

I100 =
2s

π L3
2 (1− k2)

[
2

1− k2
E−K

]
X

I110 =
2

πaL3
2 (1− k2)

[(
L2
2 − a2

)
K+

a2 − b2 − s2

1− k2
E

]
X

I111 =
2 s

πabL2 (1− k2)

[
1 + k2

1− k2
E−K

]
X

I120 =
2s

πL3
2 (1− k2)

[
K− 2

1− k2
E

]
+

4s

π a2L2
(Πab −K) , a < b

=
2s

πL3
2 (1− k2)

[
K− 2

1− k2
E

]
+

4s

π a2L2

(
πL2

2s
−Πba

)
, a > b

I121 =
2

πa2bL2 (1− k2)

{(
L2
2

(
2− k2

)
− a2

)
K+

[
a2
(
s2 + a2 − b2

)
L2
2 (1− k2)

− 2L2
2

(
1− k2

)]
E

}

I122 =
2sL2

πa2b2

{
2 (E−K) +

k2

1− k2

[
2

1− k2
E−K

]}
I000 =

2

π L2
K X

I010 =
2s

πaL2
(Πab −K) , a < b

=
2s

πaL2

(
π L2

2s
−Πba

)
, a > b

X

I011 =
2

π L1
(K−E) X

I020 =
2L2

πa2

[
2 (E−K) +

a2

L2
2

K+
2s2

L2
2

(K−Πab)

]
, a < b

=
2L2

πa2

[
2 (E−K) +

a2

L2
2

K+
2s2

L2
2

(
Πba −

πL2

2s

)]
, a > b

I021 =
2s

πaL1

[
E−K+

b2

L2
2

(Πab −K)

]
, a < b

=
2s

πaL1

[
E−K+

b2

L2
2

(
πL2

2s
−Πba

)]
, a > b

I022 =
2

3πL1

{
2

k
(K−E) + k (K− 2E)

}
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I−1
10 =

2L2

πa

[
E−K+

a2

L2
2

K+
s2

L2
2

(K−Πab)

]
, a < b

=
2L2

πa

[
E−K+

a2

L2
2

K+
s2

L2
2

(
Πba −

πL2

2s

)]
, a > b

X

I−1
11 =

s

πL1

[
E−K+

b2

L2
2

(Πab −K) +
a2

L2
2

(
π L2

2s
−Πab

)]
, a < b

=
s

πL1

[
E−K+

a2

L2
2

(Πba −K) +
b2

L2
2

(
πL2

2s
− Πba

)]
, a > b

X

I−1
20 =

sL2

πa2

[
3 (K−E)− a2

L2
2

K+
a2 − b2 + 2s2

L2
2

(Πab −K)

]
a < b

=
sL2

πa2

[
3 (K−E)− a2

L2
2

K+
a2 − b2 + 2s2

L2
2

(
πL2

2s
−Πba

)]
, a > b

I−1
21 =

2

3πaL1

[(
2b2 − a2 − s2

)
(E−K) +

a2b2

L2
2

K+
3b2s2

L2
2

(K−Πab)

]
, a < b

=
2

3πaL1

[(
2b2 − a2 − s2

)
(E−K) +

a2b2

L2
2

K+
3b2s2

L2
2

(
Πba −

πL2

2s

)]
, a > b

I−1
22 =

s

6πabL1

[
(5a2 + 5b2 + 2s2)(E−K) +

a2b2

L2
2

K+
3b4

L2
2

(Πab −K)

+
3a4

L2
2

(
πL2

2s
−Πab

)]
, a < b

=
s

6πabL1

[
(5a2 + 5b2 + 2s2)(E−K) +

a2b2

L2
2

K+
3a4

L2
2

(Πba −K)

+
3b4

L2
2

(
πL2

2s
−Πba

)]
, a > b

I−2
11 =

1

3πL1

[
(2a2 + 2b2 − s2)(E−K) +

4a2b2

L2
2

K+
3b2s2

L2
2

(K−Πab)

+
3a2s2

L2
2

(
Πab −

πL2

2s

)]
, a < b

=
1

3πL1

[
(2a2 + 2b2 − s2)(E−K) +

4a2b2

L2
2

K+
3a2s2

L2
2

(K−Πba)

+
3b2s2

L2
2

(
Πba −

πL2

2s

)]
, a > b
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I−2
20 =

L2

9πa2

[
(8a2 − 4b2 + 11s2)(E−K) +

a2(6a2 − 2b2 + 3s2)

L2
2

K

+
3s2(3a2 − 3b2 + 2s2)

L2
2

(K−Πab)

]
, a < b

=
L2

9πa2

[
(8a2 − 4b2 + 11s2)(E−K) +

a2(6a2 − 2b2 + 3s2)

L2
2

K

+
3s2(3a2 − 3b2 + 2s2)

L2
2

(
Πba −

πL2

2s

)]
, a > b

I−2
21 =

s

12πaL1

[
(5a2 − 13b2 + 2s2)(E−K)− a2(3a2 + 5b2)

L2
2

K

+
3(a2 − b2)2 − 12b2s2

L2
2

(K−Πab) +
3πL2a

4

2sL2
2

]
, a < b

=
s

12πaL1

[
(5a2 − 13b2 + 2s2)(E−K)− a2(3a2 + 5b2)

L2
2

K

+
3(a2 − b2)2 − 12b2s2

L2
2

(
Πba −

πL2

2s

)
+

3πL2a
4

2sL2
2

]
, a > b

I−2
22 =

1

30π abL1

{[
8
(
a2 − b2

)2
+ 8a2b2 − s2

(
9a2 + 9b2 + 2s2

)]
(E−K)

+ a2b2
4
(
a2 + b2

)
− s2

L2
2

K+ 15
b4s2

L2
2

(K−Πab) + 15
a4s2

L2
2

(
Πab −

πL2

2s

)}
, a < b

=
1

30π abL1

{[
8
(
a2 − b2

)2
+ 8a2b2 − s2

(
9a2 + 9b2 + 2s2

)]
(E−K)

+ a2b2
4
(
a2 + b2

)
− s2

L2
2

K +15
a4s2

L2
2

(K−Πba) + 15
b4s2

L2
2

(
Πba −

πL2

2s

)}
, a > b
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Appendix A. Proof of transformation formula. Eason, Noble and Sneddon de-

fine the scaled Heuman function

Λ (ψ, κ) =

√
(1− ν) (ν − κ2)√

ν
Π (ν, κ) =

|a− b|
(a+ b)

s√
(a+ b)

2
+ s2

Π (ν, κ)

= [E (κ)−K (κ)]F (ψ, κ′) +K (κ)E (ψ, κ′)

(A.1)

where

sinψ =
1

κ′

√
ν − κ2

ν
=

s

B
, cosψ =

κ

κ′

√
1− ν

ν
=

|a− b|
B

, tanψ =
s

|a− b|
(A.2)

Thus, we need expressions to move from one set of parameters to the other. From

Gradshteyn and Ryzhik, page 907, formulas 8.121–3, 8.121–4, and page 908, formulas

8.125 & 8.126, the Landen-Gauss transformations which are relevant to this proof are:

κ =
2
√
k

1 + k
, K (κ) = (1 + k)K (k) , E (κ) =

2

1 + k
E (k)− (1− k)K (k) (A.3a)

κ′ =
1− k

1 + k
, F (ψ, κ′) = (1 + k)F (φ, k′)

E (ψ, κ′) =
2

1 + k
[E (φ, k′) + k F (φ, k′)]− 1− k

1 + k
sinψ

(A.3b)

where

tan (ψ − φ) = k tanφ (A.3c)

Substituting these into the expansion of the scaled Heuman function above, we obtain

Λ (ψ, κ) = [E (κ)−K (κ)]F (ψ, κ′) +K (κ)E (ψ, κ′)

=

[
2

1 + k
E (k)− (1− k)K (k)− (1 + k)K (k)

]
(1 + k)F (φ, k′)

+ (1 + k)K (k)

{
2

1 + k
[E (φ, k′) + k F (φ, k′)]− 1− k

1 + k
sinψ

}
= 2 {[E (k)−K (k)]F (φ, k′) + K (k)E (φ, k′)} − (1− k) sinψ K (k)

(A.4)

But

(1− k) sinψ =

(
1− L1

L2

)
s

L2 − L1
=

s

L2
(A.5)

so

Λ (ψ, κ) = 2Λ (φ, k)− s

L2
K (k) (A.6)

Also, expanding the expression for tan (ψ − φ), we obtain

k tanψtan2φ+ (1 + k) tanφ− tanψ = 0 (A.7)

which is a quadratic equation in tanφ. Its solution is

tanφ = − 1 + k

2k tanψ

{
1∓

√
1 +

4k

(1 + k)
2 tan

2ψ

}

= − 1

(1− κ′) tanψ

{
1∓

√
1 + κ2 tan2ψ

} (A.8)
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But

κ tanψ =
√
1− κ′2

s

|a− b|
(A.9)

and √
1 + κ2tan2ψ =

√√√√1 +
4abs2[

(a+ b)
2
+ s2

]
(a− b)

2

=

√√√√ (a+ b)
2
(a− b)

2
+ s2(a− b)

2
+ 4abs2[

(a+ b)
2
+ s2

]
(a− b)

2

=
a+ b

|a− b|

√
(a− b)

2
+ s2√

(a+ b)
2
+ s2

=
a+ b

|a− b|
κ′

(A.10)

Hence, taking into account that k = (1− κ′) / (1 + κ′), then

tanφ = − |a− b|
(1− κ′) s

{
1± a+ b

|a− b|
κ′
}

=
1

(1− κ′) s
{− |a− b| ∓ (a+ b)κ′}

=
sgn (a− b)

ks

{
bk − a

b− ak

(A.11)

A) Let’s consider the first of the two solutions above. In this case

tanφ =
bk − a

ks
sgn (a− b) =

s2kb

(L2
1 − b2) ks

sgn (a− b) =
s

b (nab − 1)
sgn (a− b) (A.12)

so

tanψ

tanφ
=

s
|a−b|

s
b(nab−1) sgn (a− b)

=
1− nab
1− a

b

=
1− k a

b

1− a
b

→


> 1 a < b

±∞ a = b

< 0 a > b

(A.13)

Case 1: a < b

Here tanψ > tanφ i.e. ψ > φ and ψ − φ > 0. Also, k tanφ > 0, in which case the

angle transformation formula tan (ψ − φ) = k tanφ is satisfied with positive angles in

the range
[
0, 12π

]
. Thus, in this case

tanφ =
1

k

√
nab − k2

1− nab
=

s

b (1− nab)
(A.14a)

sinφ =
1

k′

√
nab − k2

nab
=

s

k′ L2

√
1− nab

(A.14b)

cosφ =
k

k′

√
1− nab
nab

=
b
√
1− nab
k′ L2

(A.14c)

Also

Λ (φ, k) ≡ Λab =

√
(1− nab) (nab − k2)

nab
Π (nab, k) =

s

L2
Πab (A.15)

so

Λ (ψ, κ) =
s

L2
[2Πab −K] , a < b (A.16)
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Case 2: a > b

Now tanφ < 0, i.e. φ < 0, which we reject.

B) Consider next the second solution for tanφ:

tanφ =
b− ak

ks
sgn (a− b) =

s a

a2 − L2
1

sgn (a− b) =
s

a (1− nba)
sgn (a− b) (A.17)

so

tanψ

tanφ
=

s
|a−b|

s
a(1−nba)

sgn (a− b)
=

1− nba

1− b
a

=
1− k b

a

1− b
a

→


< 0 a < b

±∞ a = b

> 1 a > b

(A.18)

We see that when a < b we obtain a negative solution φ < 0, so we reject it as well. On

the other hand, for a > b this leads us to

tanφ =
1

k

√
nba − k2

1− nba
=

s

a (1− nba)
(A.19a)

sinφ =
1

k′

√
nba − k2

nba
=

s

k′L2

√
1− nba

(A.19b)

cosφ =
k

k′

√
1− nba
nba

=
a
√
1− nba
k′ L2

(A.19c)

and

Λ (φ, k) ≡ Λba =

√
(1− nba) (nba − k2)

nba
Π (nba, k) =

s

L2
Πba (A.20)

so

Λ (ψ, κ) =
s

L2
[2Πba −K] , a > b (A.21)

An additional useful formula is derived next. From section 3, the characteristics of

Πab,Πba are nab = k a
b > k2 and nba = k b

a > k2, which together satisfy the relation-

ship nab nba = k2. Hence, the special addition formula 117.02 on page 13 in Byrd and

Friedman applies to these functions:

Π
(
k a

b , k
)
+Π

(
k b
a , k
)
= K (k) +

π

2

√
k a

b(
1− k a

b

) (
k a

b − k2
)

= K (k) +
π

2

√
1

k2 −
(
a
b + b

a

)
k + 1

(A.22)

Also

k
(
a
b + b

a

)
=
L1

L2

a2 + b2

ab
=
a2 + b2

L2
2

=
L2
1 + L2

2 − s2

L2
2

and k2 =
L2
1

L2
2

(A.23)

so √
1− k

(
a
b + b

a

)
+ k2 =

√
1− L2

1 + L2
2 − s2

L2
2

+
L2
1

L2
2

=

√
s2

L2
2

=
s

L2
(A.24)
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Hence

Πab +Πba = K (k) +
πL2

2s
(A.25)

Appendix B. Derivatives and continuity of Lambda function. It can be shown

that

∂Π (nab, k)

∂a
=
∂Πab

∂nba

∂nab

∂a
+
∂Πab

∂k

∂k

∂a
=
∂Πab

∂nab

(
k

b
+
a

b

∂k

∂a

)
+
∂Πab

∂k

∂k

∂a

=
b

2ka (ka− b)

(
k + a

∂k

∂a

)(
K (k) +

a

kb− a
E (k)− bk

1−
(
a
b

)2
kb− a

Πab

)

+
b

a− kb

(
Πab −

E (k)

1− k2

)
∂k

∂a
(B.1a)

∂Πba

∂a
=
∂Πba

∂nba

∂nba

∂a
+
∂Πba

∂k

∂k

∂a
=

b

a2

(
a
∂k

∂a
− k

)
∂Πba

∂nba
+
∂Πba

∂k

∂k

∂a

=
1

2k (kb− a)

(
a
∂k

∂a
− k

)(
K (k) +

b

ak − b
E (k)− ak

1−
(
b
a

)2
ak − b

Πba

)

+
a

b− ak

(
Πba −

E (k)

1− k2

)
∂k

∂a

(B.1b)

When a = b, then

∂Πab

∂a

∣∣∣∣
a=b

=
1

2kb (1− k)

(
k + b

∂k

∂a

∣∣∣∣
a=b

)(
1

1− k
E (k)−K (k)

)
+

1

1− k

∂k

∂a

∣∣∣∣
a=b

(
Πab −

E (k)

1− k2

) (B.2a)

∂Πba

∂a

∣∣∣∣
a=b

=
1

2kb (1− k)

(
b
∂k

∂a

∣∣∣∣
a=b

− k

)(
1

1− k
E (k)−K (k)

)
+

1

1− k

∂k

∂a

∣∣∣∣
a=b

(
Πba −

E (k)

1− k2

) (B.2b)

and from their difference(
∂Πab

∂a
− ∂Πba

∂a

)∣∣∣∣
a=b

=
1

b (1− k)

(
1

1− k
E (k)−K (k)

)
+

1

1− k

∂k

∂a

∣∣∣∣
a=b

(Πab −Πba)|a=b

(B.3)

Since (Πab −Πba)|a=b = 0, then(
∂Πab

∂a
− ∂Πba

∂a

)∣∣∣∣
a=b

=
1

b (1− k)

(
1

1− k
E (k)−K (k)

)∣∣∣∣
a=b

̸= 0 (B.4)

which shows that Πab,Πba do not continue one into the other at a = b, but have distinct

slopes at this transitional value.

Consider next the ENS Lambda function:

Λ (ν, κ) =

√
(1− ν) (ν − κ2)√

ν
Π (ν, κ) = π

2Λ0 (ψ\ϑ) (B.5)
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When a = b, then ν = 1 with κ < 1 if s > 0, in which case Π (1, κ) = ∞. However,

Λ (ν, κ) remains finite because of the factor
√
(1− ν) → 0. The proof of this relies on the

relationship between the ENS Lambda function and Heuman’s function. Indeed, when

ν = 1 → cos2ψ = 0 → ψ = 1
2π, we have

Λ (1, κ) = 1
2πΛ0

(
1
2π\ϑ

)
= π

2 × 1 = π
2 , for any κ < 1

(
ϑ < 1

2π
)
, a = b

so the Lambda function remains finite at a = b. On the other hand, in Appendix A we

found the equivalence

Λ (ν, κ) =

{
Λab

Λba
=

s

L2

{
2Πab −K (k) , a < b

2Πba −K (k) , a > b
(B.6)

which we have verified to be true by numerical testing. Since Πab|a=b = Πba|a=b,

it follows that Λab|a=b = Λba|a=b = Λ(1, κ) = 1
2π, so the Lambda function itself is

continuous at a = b. However, as we have already found out in B.4

∂Πab

∂a

∣∣∣∣
a=b

̸= ∂Πba

∂a

∣∣∣∣
a=b

(B.7)

Hence, Λ exhibits a discontinuity of slope when a = b, so it is discontinuous. On the

other hand, the modified function

sgn (a− b) Λ (ν, κ) =
a− b

a+ b

s

L2 (1 + k)
Π (ν, κ) (B.8)

jumps from −1 through 0 to +1 in the neighborhood a = [b− ε, b, b+ ε]. Hence, the

equivalence

sgn (a− b) Λ (ν, κ) =
s

L2

{
K (k)− 2Πab, a < b

2Πba −K (k) , a > b
(B.9)

is intrinsically discontinuous, so HP’s use of the upper expression in the domain a > b lead

them necessarily to an erroneous branch. Nonetheless, despite the intrinsic discontinuity

of the Lambda function, many of the integrals and particularly those that affect HP’s

elasticity problem are still continuous up to first order, i.e. strains and stresses are

continuous. For example, in eq. 5.1b, the discontinuous fragment is

f (a, b, s) = sgn (a− b)
[
2
πΛ (ν, κ)− 1

]
(B.10)

Since as we have just seen 2
πΛ (1, κ) = 1, then f (a, a, s) = sgn (a− b)×0 = 0, both when

approaching from the left or from the right, so the primitive fragment is continuous.

Also, the first derivative will contain a term of the form[
2
πΛ (ν, κ)− 1

]
δ (a− b) (B.11)

which despite the Dirac-delta factor is also zero at the transition, so again the first deriv-

ative of the fragment is continuous. Higher derivatives, however, will be discontinuous.

The previous results lead to an interesting corollary. Since at a = b Λaa = 1
2π and

Πaa = Π (k, k), then

2Π (k, k)−K (k) = π
L2

2s
(B.12)

where

L1 = b

(√
1 +

( s
2b

)2
− s

2b

)
, L2 = b

(√
1 +

( s
2b

)2
+

s

2b

)
(B.13)
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and
2s

L2
= 2

s

b

b

L2
= 2

L2 − L1

L2
= 2

(
1− L1

L2

)
= 2 (1− k) (B.14)

k =
L1

L2
=
L2
1

b2
=
b2

L2
2

(B.15)

so

2Π (k, k)−K (k) =
π

2 (1− k)
(B.16)

or

(1− k) [2Π (k, k)−K (k)] =
π

2
(B.17)

which is valid for any 0 < k < 1. Of course, this is nothing but an alternative represen-

tation of Heuman’s lambda function satisfying the limiting condition

Λ0 (ν, κ)|ν=1 = Λ0

(
1
2π\ϑ

)
= 1 (B.18)

Appendix C. Numerical integration. To avoid mistakes, all of the integration

formulas given earlier have been verified by direct numerical integration. To this purpose,

the improper integrals are divided into two integration ranges [0, x0] and [x0,∞], where

x0 defines the start of the tail. The body is integrated by an appropriate numerical

quadrature which accounts for the rate of change of the integrands, while the tail is

obtained in closed-form using asymptotic expansions as follows.

Jm (ax) ≈
√

2

πax
cos
[
ax− 1

4π (1 + 2m)
]

(C.1)

Jn (bx) ≈
√

2

πbx
cos
[
bx− 1

4π (1 + 2n)
]

(C.2)

Jm (ax) Jn (bx) ≈
2

π

1

x
√
ab

cos
[
ax− 1

4π (1 + 2m)
]
cos
[
bx− 1

4π (1 + 2n)
]

(C.3)

But

cosφ cosψ = 1
2 {cos (φ− ψ) + cos (φ+ ψ)} (C.4)

so

cos
[
ax− 1

4π (1 + 2m)
]
cos
[
bx− 1

4π (1 + 2n)
]

= 1
2

{
cos
[
(a− b)x− 1

2π (m− n)
]
+ cos

[
(a+ b)x− 1

2π (m+ n+ 1)
]}

= 1
2

{
cos (a− b)x cos 1

2π (m− n) + sin (a− b)x sin 1
2π (m− n)

+ cos (a+ b)x cos 1
2π (m+ n+ 1) + sin (a+ b)x sin 1

2π (m+ n+ 1)
} (C.5)

Also

cos 1
2π (m− n) =

{
(−1)

1
2 (m−n)

m− n is even

0 m− n is odd

cos 1
2π (m+ n+ 1) =

{
0 m+ n is even

(−1)
1
2 (m+n+1)

m+ n is odd

(C.6a)
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sin 1
2π (m− n) =

{
0 m− n is even

(−1)
1
2 (m−n−1)

m− n is odd

sin 1
2π (m+ n+ 1) =

{
(−1)

1
2 (m+n)

m+ n is even

0 m+ n is odd

(C.6b)

Then again, m± n is even if both m,n are even, or both are odd, and it is odd if one is

even and the other one is odd. Hence,

Jm (ax)Jn (bx) ≈
1

πx
√
ab

[
(−1)

1
2 (m−n)

cos (a− b)x+ (−1)
1
2 (m+n)

sin (a+ b)x

]
even m± n

(C.7a)

Jm (ax) Jn (bx) ≈
1

πx
√
ab

[
(−1)

1
2 (m−n−1)

sin (a− b)x+ (−1)
1
2 (m+n+1)

cos (a+ b)x

]
odd m± n

(C.7b)

Observe that (−1)
1
2 (m+n)

= (−1)
1
2 (m−n)

(−1)
n ̸= (−1)

1
2 (m−n)

.

We now define the following exponential integrals:

C0 (A, s) =

∫ ∞

x0

e−sx cosAx dx =
s cosAx0 −A sinAx0

A2 + s2
e−sx0 (C.8a)

S0 (A, s) =

∫ ∞

x0

e−sx cosAx dx =
A cosAx0 + s sinAx0

A2 + s2
e−sx0 (C.8b)

C−1 (A, s) =

∫ ∞

x0

e−sx cosAx

x
dx = Re {E1 [x0 (s+ i A)]} (C.8c)

S−1 (A, s) =

∫ ∞

x0

e−sx sinAx

x
dx = − Im {E1 [x0 (s+ i A)]} (C.8d)

C−2 (A, s) =

∫ ∞

x0

e−sx cosAx

x2
dx =

e−sx0 cosAx0 − Re {x0 (s+ iA)E1 [x0 (s+ iA)]}
x0

(C.8e)

S−2 (A, s) =

∫ ∞

x0

e−sx sinAx

x2
dx =

e−sx0 sinAx0 + Im {x0 (s+ iA)E1 [x0 (s+ iA)]}
x0

(C.8f)

where E1 (z)= exponential integral, which can readily be evaluated using Matlab. We

can now express the tail Tλ
mn (a, b, s) of the integrals as:

Even m± n:

Tλ
mn (a, b, s) =

∫ ∞

x0

e−sxxλJm (ax) Jn (bx) dx

=
1

π
√
ab

[
(−1)

1
2 (m−n)

Cλ−1 (a− b, s) + (−1)
1
2 (m+n)

Sλ−1 (a+ b, s)

]
(C.9a)
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Odd m± n:

Tλ
mn (a, b, s) =

∫ ∞

x0

e−sxxλJm (ax)Jn (bx) dx

=
1

π
√
ab

[
(−1)

1
2 (m−n−1)

Sλ−1 (a− b, s) + (−1)
1
2 (m+n+1)

Cλ−1 (a+ b, s)

]
(C.9b)
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