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PREFACE

The study described in this report was sponsored by the Federal
Aviation Administration under Inter-Agency Agreement No. DOT-FA74WAI-
487. "Theoretical Relationship Between Moduli for Soil Layers Beneath
Concrete Pavements." This report is the first of two reports to be
completed under this agreement and covers the work accomplished between
June 1974 and March 1975.

The kind assistance of the U. S. Army Engineer Waterways Experiment
Station, especially Dr. Walter R. Barker and Dr. Frazier Parker, in
gathering the data for Figure 5 of this report is appreciated. Also
appreciated was the excellent guidance provided by Mr. H. Tomita of the
Airport Pavement Branch of the Federal Aviation Administration.
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I. INTRODUCTION

The purpose of this report is to présent a mathematically consistent
relationship between the Westergaard method of analysis used for rigid
pavements and the elastic layer method of analysis used for both rigid
and flexible pavements. It 1s intended that this relationship provide
an explanation for the different results which sometimes occur from
application of these two methods to the same pavement. The relationship
also demonstrates that the problem of correlating the two methods can
usually be related to inconsistencies in material input, to one or both
methods; and to a considerably lesser extent, to the disparities in the
mathematical idealizations.

The means used to relate the elastic layer parameters to those of
Westergaard rely on the fundamental laws of mechanics, on which both
methods are based. To insuré a common starting point, a brief descrip-
tion of the equations which are associated with Westergaard and elastic
layera analyses, is presented. These analyses are based on two different
linear idealizations of a pavement system.

The Westergaard idealization considers a plate of infinite extent
supported by a fluid with a modulus of subgrade reaction k (Figure 1).

A uniform pressure P is applied over a circularb area of radius “‘¢a’’ to
the top surface of the plate. The responses used by most engineers are
the maximum deflection, which occurs under the center of the load, and
the maximum horizontal tensile stress, which occurs under the center of
the load at the bottom edge of the plate. The expressions for these

responses obtained from Reference 1 are:

“ Sometimes referred to as Burmister type analyses,
or, for a single layer, as Boussinecsq analyses.
An elliptical formulation is also used, but 1is
not considered in this report. Formulations are
also available for edge and joint loadings, see
Referencce 1.
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Figure 1. Westergaard pavement idealization.
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Traditionally, this idealization has been used to design rigid pavements.
The elastic layer idealization considers a semi-infinite body
composed of N horizontal layers of homogeneous material (Figure 2). A
uniform pressure P is applied over a circular area of radius ‘‘a’’ to
the top surface of the top layer. FEach layer is defined using Young’s
modulus En’ Poisson’s ratio Vs and layer thickness hnc. For the purposes
of this report, only the responses similar to those of Westergaard are
discussed, i.e., maximum deflection and tensile stress in the top layer.

The expressions for these responses are:

Pa(l + v.) J (%)
1 1 1 1 1 1
T TE o/ [A1 *AHGv - 2)(Ag - Aa)] xdx (3)

¢ All layers (i.e., n =1, 2, 3...N) extend laterally to
infinity while the bottom layer extends vertically to
infinity (i.e., = o),
For a single layer system, consideration of
which is deemed irrelevant.,to the current
discussion, § = Pa/E(1 = v7) and o = 0.
Appendix A [i.e., equations (A=-51 and A-50)[ w(0,0)
and O (0, h1) are used.

. Lad
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Figure 2. Elastic layer idealization.
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fo} = - -%— A - A + (A

[o]

+ph1(A; - Al) e '3, (x)dx (4)

where J1 is a Bessel function

The derivation for these expressions, and the definitions of the constants
[A:...A;] and transform parameter [p] are presented in Appendix NS
Computers and numerical procedures must be used to solve these complicated
expressions. The ELAST computer program, which solves these two expres=-
sions, is described in Appendix C. Programs which solve for the general
response of elastic layer systems are also available, but are more

complicated and cost more to runf [References 2, 3, and 4].

II. DEVELOPMENT OF RELATIONSHIP BETWEEN WESTERGAARD AND ELASTIC LAYER
ANALYSES

Three different methods for computing ¢¢k*’ from an elastic layer

system are described.

Method 1. Computation of k based on the simulation of
a plate bearing test using an elastic layer

idealization.

To be notationally consistent with equations (1 and 2),

$ and ¢ are used here, while for the analogous equations
in Appendix A fi.e., equations (A-51 and A-~50)] w(0,0) and
Grr(o,h1) are used.

J For example, ELAST runs on an average twenty five times
faster than an equivalent run of the program BISTRO
described in Reference 2,




Method 2. Computation of k based on the requirement
that equations (1 and 3) produce the same values

of displacement,

Method 3. Computation of k based on the requirement
that equations (2 and 4) produce the same values

of stress.

It is felt that these three methods comprise the significant ways to
relate the Westergaard and elastic layer idealizatioms.

v Ideally, for a specific pavement, the values of k produced by
methods 1, 2, and 3, as well as that measured in the field, would be
equal. However, due to the ‘‘vagaries’’ of nature, this is not to be.
Discussion concerning the implication of these differences is given in

this and the next section.
1. Westergaard Functionals

For conciseness, the mathematical implementations of methods
1, 2, and 3 are denoted as Westergaard functionals. From these function=-
als various values, mathematically equivalent to “*k’’, are computed.
These values provide quantitative measurements of the relationship
between the two idealizations.

The Westergaard displacement functional implements Methods 1 and 2:
denoted kl and ki. Figure 3a illustrates the application of ki. It
shows two equivalent idealizations, where the Westergaard parameter is

1

computed so that both subgrades have the same stiffness (i.e., k = kw,

where kl is a function of E h vN). Figure 3b

2’ Vza 2, E3, V3, h3... :N,
shows two equivalent idealizations where the Westergaard parameter is
computed so that both top layers have the same peak deflection (i.e., k

2 2 . . '
kw, where kw is a function of E1, Vi h1, hz, Vo h2...EN, VN).
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(b} tdealizations for kv% equivalency where the deflection at T for both idealizations is equal.

Figure 3. Usage of Westergaard displacement functionals.



Finally, to create an equivalency for maximum tensile stress in the top
layer (Method 3), the Westergaard stress functional k; is provided

(Figure 4).

kl functional. The kl functional is derived from an elastic layer

idealization where the first layer is removed, and the surface of the
second layer is loaded with pressure P of radius ““a’’ as shown in
Figure 3a. Equation (5) defines the peak deflection for this situation,

and is taken from Equation (A-51) of Appendix A.

Pa(l + v.) J. (%)
2 2 2 2 1
§, = = A7 + A%'(lwz 2)(A3 - Aa) o dx (5)
2 o
where [A2 A2 A2 and A2] are functions of [E v h E v
1) 2) 3) 4 3, 3) 3’ 4, 4!
hA' .vN]

The definition of k is employed to obtain k& from equation (5), that is,
the reciprocal of the deflection caused by a unit pressure applied over

a 15=inch radius circle.

L (6)

where 62 is computed using equation (5)

and in equation (5)

P =1 psi
a = 15 inches
The kL functional provides a ‘‘mathematical equ[valvnt”y - based on

elastic material constants — to the plate bearing test from which k is

7 ¢emathematical equivalent’’ is somewhat loosely
used here. Refer to Section III for a discussion
of this point.
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Figure 4. Usage of Westergaard stress functional.



derived. Equations (5 and 6) imply that ki is only a function of the

system material parameters [E,, v h ...vN] and is independent of

2> 72> 2
aircraft loading.

ki and k; functionals. These functionals are derived in a two step

operation (Figures 3b and 4). One of the steps consists of computing

§ and o for the Westergaard idealization (i.e., the pavement’s peak
displacement and maximum tensile stress). Equations (1 and 2) are only
a first order approximation to the ¢‘exact’’ calculation of § and ¢, and
are usually of acceptable accuracy. However, in development of the
functionals it is desirable that accurate (i.e., ‘“‘exact’’) solutions of
the Westergaard idealization be computed for whatever system parameters
are employed. The basis for these ‘‘exact’’ solutions and a discussion
of their merits is presented in Appendix B. It is the ‘‘exact”’ form of

equations (1 and 2) that is used to develop the ki and k; functionals.

ki and kl are more like algorithms, rather than actual mathematical
expressions, and are computed by iteration. For the first step, the
solution of the elastic layer equations (2 and 4) is computed where
¢<P’’ is the tire pressure, ‘‘a®’ is the tire radius, and the other
constants are derived from the system parameters: E, v, and h. During
the second step, various ¢‘guessed’’ values for k are substituted in the
‘¢exact®’ form of the Westergaard equations (1 and 3). By requiring
that the values for & of the second step equal the & of the first step,
a value of k is computed, which is denoted as ki. The equivalent k,
computed by matching the two o, is k;. The functionals ki and k; are

dependent on hoth the system material parameters and the aircraft

loading.
2. ELAST Computer Program
] 1 2 1
All three functionals Ikw, kw’ and kS] are computed by the ELAST

computer program described in Appendix C. Two additional functionals

are also computed by ELAST: ki and ki. As mentioncd earlier, the usage

10



of equations (1 and 2) for computation of ki and k; is felt to be
inappropriate. However, this decision makes it awkward to use either
the k derived from ki in equation (1), or the k derived from k; in
equation (2). Thus, in a manner analogous to the derivation of kw and
k;, kz and ki are derived, using equations (1 and 2), instead of the

‘‘exact’’ expressions in Appendix B. The consequences of this dual

derivation are shown in the next section.
3. Usage of Westergaard Functionals

Five different functionals have been introduced. The basis for

these functionals is summarized below.

1. kl provides a k which i1s based on the simulation of a plate

bearing test using an elastic layer idealization.

2. ki provides a k which is based on the requirement that the
deflections computed from equation (3), and the ‘‘exact’’ form

of equation (1), be equal.

3. kg is similar to ki, except that equation (1) is used instead

of its ‘‘exact’’ form.

4, k; provides a k which is based on the requirement that the
stress computed from equation (4), and the ‘‘exact’’ form of

equation (2), be equal,

1
5. ki is similar to kq, except that equation (2) is used instead

of its ¢‘exact’?’ form.

There is a fundamental difference between k& and ki, kz, k;, and ki.

1 . . .
kw provides an equivalency between the elastic layer and Westergaard
subgrade stiffness, which is not based on any Westergaard formulae or an
aircraft loading. 1In contrast, the other functionals are derived from a

specific Westergaard equation and tire load.

11



Examples illustrating the functionals’ usage. A number of pavement

sections were selected to illustrate the usage of the functionals.

These sections are shown in Figure 5, and represent the widest possible
variation of rigid pavement types for which sufficient materials data

was avallable. The sections shown are roughly divided into three basic
types according to the value of k. The “‘A’’ type is generally a concrete
cap placed on a granular material with a k from 300-500 pci. The ““B”’
type pavement is generally a concrete cap placed on a silt, or clayey
material, with a k of 50-200 pci. *““A’? and “‘B’’ represent classic
applications for the Westergaard idealization: a relatively thin, stiff,
‘‘plate like’’ layer over a relatively soft, homogeneous subgrade. The
€¢C’’ type pavement is somewhat hodgepodge, but includes mostly stabilized
sections of various depths and k values.

For the sections of Figure 5, Tables 1 and 2 list the computed values
for the five functionals and the measured values of modulus k. Also shown
are the €¢§’’ and ““0’’ computed from the Westergaard equations (1) and
(2), respectively; two sets of values were computed by employing both k
and kl. In addition, €¢§’’ and “‘v’’ for the elastic layer 1dealization
also appear. For Table 1, the values of displacement and stress, as
well as functionals [ki, kg, k;, and kz], result from a 30,000 pound
load applied over a 30-inch-diameter circle. While for Table 2, a

27,000 pound load, over a 11.4=inch~diameter circle, is used.

Usage of kl. As mentioned, kl is the elastic layer equivalent to
the modulus of subgrade reaction. There are two significant ways in
which kl can ?e utilized.

First, kw’ offers a means to unite the two most widely available
characterizations of the soil’s response to load. For the sections of
Figure 5, the mean percent difference of kl, with respect to k, 1is
shown at the top of Table 3. The asterisks in Table 1 indicate those
sections where kl is within 25% of k (i.e., 6 out of 20), and the
asterisks in Table 2 indicate those sections where k is greater than

kl (i.e., 5 out of 20). While the disparity between kl and k is

12
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Section Al Section A2 Section A3 Section A4
(O'Hare Airport, 14R-32L) (Key juint study, item 1) (Channelized traffic test track, item 60) _Fairbanks, Alaska, RN23)
AVA AV
6" PCCE=4.3M,v=0.2

12" RCE=4.2,v=0.2

8" PCCE=7.5M,v=0.2

12” PCCE = 5.1M, » = 0.2

24" Clayey gravel sand 36" Sand
60" Crushed limestone (SW-SC) CBR = 21 Silty sandy gravel E = 10,000
and gravel k= 300, E = 33,000.v= 0.3 k =300 v=0.3
E = 44,000 E = 10,000
v=0.3 Heavy clay v=0.3
CBR =4, k=175
E =6,000,v=0.3
Silt
E = 4,500
Subgrade E = 22,700 v=03
v=0.3
_ﬁ/ II ;,I / ﬁ/ F 71 — - /L ‘,l £ — £ -4 /
Section A5 Section A6 Section A7 Section A8
( USNAS North Island, R-18, 31 + 50) (USNAS Moffett, west taxiway, 82 + 50) (USNAS Miramar, T-1, 12 + 00) (Fairbanks, Alaska, RN 18)
kvl v, iV,

8” PCCE=3M,v=0.15

12” PCCE = 3M,v=0.15

C =7 andE=5,0009= 0.2k=370

12" PCCE=3M, v = 0.15

12" PCCE = 4.3M, v = 0.2

46" Sandy gravel

Sand 15" Sand k = 380, E = 8,100 » = 0.25 = 7700y =
k= 460 v mave] = 3000 = 0 E = 10,000
E= %720_0 13” Gravel E = 5,500, v = 0.25 9” sandy clay E = 2,300 » = 4 v=03
v=0.45
Plastic clay Dense hardpan
E=1,500 E = 16,000
v= 0,45
»=0.2 Silt CBR =5
E = 7,000
v=0.3
/o S /- ‘4’1 — A~ ‘J’ ,17 _'l L

. ~
~
P~

Figure 5. Pavement sections.
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Scction Bl Scction B2 Section B3 Scction B4

Soil stabilization pavement study, item 1 Key joint study, item 2 MWHGL, item 1 Key joint study, item 5
AV AV AV AV
T'FCE=67Mv= 0.2 11" PCCE = 6.3M » = 0.2 10” PCCE = 6.5M v = 0.2 7 10,0000
20” Membrane encased Heavy clay 36" Heavy clay Heavy clay
Lean clay k =175 CBR = 23 E = 35,000 k=111 CBR = 4 . k=63CBR =3 k=50CBR =2
E=6,800v=0.4 E=4,500v= 0.4 E=3,000»=0.4
Heavy clay
k=47CBR =3
E=4,500v=0.4
Lean clay
CBR =2

E=3,000v= 0.4

| | T 7 L /7 L ;7 ) ] ¢ i
l / LA /7 77 4 / 7/ 7 / 7 /
Section B5 Section B6 Section B7
Sharonville prestressed concrete track, P1 Sharonville, track A, item 71 Channelized traffic test track, item 51
\V4 AV AV
9”PCE=5.4Mp=0.2 32”PCCE=53Mv=0.2 11"RCE=5.1Mv=0.2
18" Silty gravelly sand
k =88 E=4,500 Heavy clay
p=03 k=50
Lean clay T — — E=3,000v=0.3
k=65 RC Reinforced concrete
- _ Lean clay
E=3,000v=10.3 k =100 PCC Portland cement concrete
E = 3,000 PC Prestressed concrete
v=0.3 FC Fibrous concrete
LC Lightweight concrete
/ L /L 7 L s £ ;7 L 1 L
—7 / 7/ 7 / 7 / ~7 7/ 7 /

Figure 5. continued
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Scction C1 Section C2 Section C3 Section C4
Soil stabilization pavement study, item 2 Sharonville track B, item 76 Soil stabilization pavement study, item 5B Soil stabilization pavement study. item 4
. VA AV AV \V
I"FCE=6IMv=07 24" PCCE = 5.3M 15” PCCE = 7.8M 15" PCCE = 7.2M
Clay gravel 6% PC v=02 v=0.2 v=0.2
17" k = 545 CBR = 150 E = 2.3M y =420 T?% PCk = 167
v=0.2 97 LCE=.idMu =02 6" Lean clay CBR = 50 E = 75.000
Heavy clay E1_84 l;;nvP_Cg 2 Heavy clay v=10.3
- e E = 6,000
k = 85 CBR = 3.4 ) Heavy cl
- v=0.4 cavy clay
E=5.300 Lean clay k=40CBR = 4
v=.4 k=135 E = 5,900
E=3,000v=20.3 v=0.4
4,1 II { f "l Il jl ’1 I’ II "I H ,I ,I ’l ,L
Section C5 Section Cé Section C7 Section C8
Soil stabilization pavement study, item 3 Key joint study, item 4 Soil stabilization pavement study, item 5A Marietta, Georgia
AV \V AV AV
15" PCCE = 6.8M 10" PCCE = 6.6M v = 0.2 15"PCCE=7.8M v = 0.2 8" PCCE = 4.3M v = 0.2
-2 % PCk =344 k=180 CBR = 14
6 Blgmmobl;s base k = 99 6" SWSCE=.1Mv=03 C 12%PC k = 188 « 8" Stabilized base E = 21.000 » = 0.3
=0-5Mv=0.3 6" Lean clay E = 75,000 v = .3 )
Heavy cl Heavy clay 3” polystrene panel E = 650 v = 0.0 Sandy clay
k= 84 CBR = 4 CBR=3k =47 B 400
- - E=5,000v=0.4 Heavy clay v=0x3
E = 5,200
be o E = 6,000
) v=0.4
‘[Ill; ,I/ 4// ‘4',1; 71/7 J,lL ;'1'17 'III

Figure 5. continued



Table §. Results of Usage of Westergaard Functionals®

Westergaard Constant and Functionals

Elastic Layer

Response

Scection -
Number kjal/s¢ k1 jobise k2| k3 k! k2 5 o

PCI/PSl/in, PC1/PS1/in. PCl PCl PCl PCl1 in. IS
Al N.AY 1,424/138/0.004 257 239 1,201 965 0.009 149
A2 300/371/0.011 535/333/0.008 49 48 308 265 0.029 380
A3* 300/190/0.007 366/184/0.007 53 51 147 121 0.018 217
A4 N.A. 310/487/0.021 62 61 255 212 0.050 532
A5 460/270/0.013 309/295/0.017 80 77 226 194 0.035 325
A6 380/160/0.008 149/187/0.014 8 8 i3 28 0.063 235
A7 370/161/0.009 212/177/0.011 48 46 105 88 0.025 202
A8 N.A. 339/181/0.008 39 a8 130 107 0.023 216
B1 175/487/0.019 414/411/0.012 40 39 287 246 0.041 457
B2 111/260/0.013 270/228/0.008 32 31 84 70 0.024 276
B3 62/328/0.019 158/288/0.011 12 12 35 31 0.045 359
B4 92/653/0.037 122/618/0.032 22 21 59 52 0.080 720
B5 88/360/0.021 136/338/0.016 14 14 41 36 0.053 408
B6® 100/43/0.003 110/42/0.003 4 4 10 12 0.016 53
B7 50/280/0.021 110/252/0.01 4 11 11 30 25 0.046 305
Ci 545/720/0.022 1,615/429/0.011 098 692 NI/ N.P. 0.019 02
(?2"’ 135/25/0.002 110/27/0.002 3 3 8 15 0.013 32
C3 12071 36/0.004 1,263/115/0.002 42 40 140,000 92,000 0.012 33
4 167/152/0.006 309/140/0.005 19 19 05 51 0.019 175
[ 99/161/0.008 408/134/0.004 I8 18 206 162 0.020 152
Coe 344/255/0.008 282/264/0.009 24 24 1os 90 0.031 312
C7e L8B/151/0.006 194/151/0.005 17 17 47 37 0.019 182
Cy* 180/368/0.019 205/360/0.017 27 26 96 84 0.051 419
u

Stresses are at bottom of first layer centered under load

and arc computed using cquation (2).

using cquation (1),

~

I

“pscudo’ top layer.,
y

The “K™ parameter was not available for these sites.

A 30,000 1b load applicd over a 30-inch-diameter circular arca was
used in computation of kvzv‘ kgv, kl y ksz, §,and o.

Displacerments are on surface centered under the load and are
. computed using cquation (3).
Stresses are at bottom of first layer centered under load and
are computed using cquation (4).
' Asterisk denotes sections where klv is within 25% of k.
The top two layers of this scction were combined to formn a

Not permissible: compressive stress at the bottom of the first layer,

Displacements are on surfuce centered under the load and are computed



Table 2. Results of Usage of Westergaard Functionals for F4 Load?

: Elastic Layer
Westergaard Constant and Functionals Response

Scction
Number k/ab/BC kll/ob,a(' kgv k?v qu k§ 5¢ of

PC1/PSl/in. PCL/PSl/in. PCl PCi1 PCl1 PCI in. PSI
Al N.A.d 1.424/228/0.0035 262 221 1,385 1,600 0.0089 225
A2 300/569/0.010 535/534/0.0078 49 48 347 275 0.0267 575
A} 300/275/0.007 366/270/0.0063 52 49 157 168 0.0174 291
A4 N.A. 310/855/0.0208 63 61 279 217 0.0477 894
As5eL 460/468/0.013 309/491/0.0164 81 75 243 196 0.0337 517
AGe 380/244/0,008 149/268/0.01 31 8 8 35 38 0.0578 303
A7® 370/244/0.008 212/259/0.0108 48 44 111 122 0.0241 274
A8 N.A. 339/268/0.0072 39 37 139 150 0.0219 289
B1 175/745/0.018 414/677/0.0115 40 39 340 262 0.0380 714
B2 111/358/0.012 270/330/0.0076 32 32 86 84 0.0225 367
B3 62/446/0.018 158/410/0.0113 13 12 35 32 0.0410 472
B4 92/1.005/0.035 122/974/0.0307 22 21 62 48 0.0744 1,074
BS5 88/510/0.020 136/489/0,0155 14 14 43 34 0.0489 555
Bo6 100/54/0,003 110/54/0.0026 3 4 9 178 0.0144 52
B7 50/377/0.019 110/352/0.0132 12 11 29 30 0.0420 393
Cl1 545/1,587/0.023 1,615/1,324/0.0132 987 929 5,266,000 350,000 0.0176 21
(?2"' 135/32/0.002 F10/33/0.0020 3 3 5 466 0.0121 30
3 420/189/0.003 1,263/170/0.0020 45 40 648,000 2,302,000 0.0111 1
C4 167/204/0,006 309/193/0.0042 21 18 65 116 0.0172 210
C5 99/212/0.008 408/187/0.0037 20 17 337 564 0.0183 142
Co# 344/380/0.008 282/388/0.0083 25 24 129 115 0.0288 422
C7 188/203/0.005 194/203/0.0050 18 10 47 83 0.0177 217
C8 180/566/0.018 205/559/0.0168 27 26 107 84 0.0478 612

o

a 27.000 1b load applied over a 11.4-inch-diamcter circular arca (approximation
of 4 single tive load from a F4 Phantom 11 fighter aiceraft) was used in computa-
tion of k2, k3 k! 5, and

w Ny kg banda
Stresses are at bottom of first layer centered under the load and are computed
using cquation (2).
Displacements are on surface centered under the load and are computed using
equation (1).

The k> parameter was not available for these sites.
. Displacements are on surface under the load and are computed using equation (3).
! Stresses are at bottom of first layer centered under the load and are computed
using cquation (4).
£ Asterisk denotes sections where k is greater than k\l'v.

The top two laycers of this section were combined to form a *pscudo” top layer.
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Table 3. Accuracy Measures Associated With k&,.

I

. Mean % difference of “v'v with respect to k, followed by

its standard deviation

. Mean % difterence of o' (computed from kvlv) with

o

respect to o (computed from k), followed by its

standard deviation

. Mcan % difference of 8¢ (computed from k‘}v) with

respect to 8€ (computed from k), followed by its
standard deviation

. Mcan %difference of 0{computed from k ! ) with

w
respect to ob (clastic layer), followed by its stan-

dard deviation

. Mecan % diffcrence of §¢ (computed from k&) with

respect to 8" (elastic layer), followed by its standard
deviation. Notc: Westergaard deflections arc always
less than those of clastic layer i

For values
taken from

“A” type
pavements

“p” type
pavcments

Taidl

type
pavements

Table 1 or
Table 2

Fable 1
Table 2

Table 1
Table 2

Table 1
Table 2

Table 1
Table 2

47%, +22'%

9%, +5%
8%, +6%

31%, +27%
37%, +22%

11%, +4%
7%, +3%

63%, +8%
62%, +11%

93%. +58%

Y%, +5%
6%, +3%

27%, +15%
27%, +11%

16%, +4%
10%, +3%

70%, 7%
69%, +7%

86%, +110%

9%, +14%
5% , +6%

23%, +18%
17%, +21%

13%," +6%
9%E £5%

75%, + 6%
65%, +28%

d

¢

o

“ The contribution of sections C1 and C3 were omiteed from this percentage

o is defined in footnote b, Table 1.
g is defined in footnote [, Table 1.
8 is defined in footmote ¢, Table 1,
& is defined in footnote ¢, Table 1.

because of their extreme differences from the other pereentages.
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often large, the corresponding disparities between values of o are quite
small (Table 3, second entry). On the other hand, § is more highly
influenced (Table 3, third entry).

The sccond important application for k; provides a direct comparison
of the Westergaard and elastic layer idealizations, and is shown in the
last two entries of Table 3. Here, the Westergaard o and § are calculated
using k&, which gives the Westergaard subgrade approximately the same
vertical stiffness as the elastic layer subgrade. This application of
k; demonstrates that the two idealizations provide relatively similar
values for 0, except in rather special situations, such as, section C3,
The effect of the differences between the idealizations is illustrated
by the consistently larger displacement prediction produced bty the
elastic layer analysis.

Usage of k; indicates that, at least for the sections of Figure 5:

1. ¢ can be computed from equations (2 or 4) using
quantities E and v, k, or kl, with relatively Iittle

change in results.

2. 1In some sections under certain loading conditions (e.g.,
C3), the shear transfer between the top layers is of
significant importance. For some of these cases where no
¢¢clear cut’’ boundary exists between pavement and subgrade,
utilization of the Westergaard idealization is not appropriate.
In other cases, stress computations using the Westergaard
idealization are complicated by the need to define a
¢‘pseudo’’ top layer stiffness and the resulting necessity
to back calculate the layer stresses from those of the

¢ ‘pseudo’’ layer.

3. When kl is used to force the match of Westergaard subgrade
stiffness to that of elastic layer, there is a relatively
constant difference in predicted displacement - approxi-
mately 707 less deflection is computed by Westergaard.
This appears to be caused by the differences between a

fluid and an elasticity subgrade.




Usage of ks, ki,‘k;, and kz. These functionals provide another

means of comparing the Westergaard and the elastic layer idealizations.

For example, if the value of kz is substituted for k in equation (2)
then the resulting stress will equal the o computed from the elastic
layer idealization. Thus, for section A2 of Table 1, a value of (k =
265) would be needed in Equation (2) to produce the 380 psi elastic
layer stress — by comparison (kl = 535) and (k = 300). This implies
that given the elastic layer stress and given equation (2), then the
modulus of subgrade reaction is 265 instead of either 535 or 300.
Essentially, k§ offers a direct comparison between the two idealizations
that is unfettered by the requirement to simulate a plate bearing test,
which is associated with the employment of kJ. kl is similar to ki
except that the ‘‘exact’’ form of equation (2) is used (see Appendix B).
Functionals ki and ks are analogoué to k; and kz where displacements,
rather than stresses, are involved. Thus, for section A2 of Table 1, a

value of (k = 48) would be needed in equation (1) to produce the 0.029
535) and (k =

il

inches of elastic layer deflection - by comparison (kl
300). The “*‘k’’ values given1by kz or kg are markedly lower than those
measured, or computed using kw. This qualitatively supports the findings
which resulted from utilizing functional ki, that is, of the two idealiza-
tions, the Westergaard one consistently predicts a smaller §.

The following arc the significant results associated with these
four (unctionals. ‘These results are based on the responses shown in

Tables 1 and 2.

1. A consistent 88% difference (standard deviation,
16%) exists for ki with respect to kl. Thus, § of
an elastic layer solution can be roughly computed

from equation (1) by reducing k by 907%.

2. Values of k; usually occur rather fandomly between
3% and 93% of k‘l. When the value of k; exceeds k‘L,
it is an indication that the Westergaard idealiza-
tion 1s inapplicable. Often combining the upper

stiff layers into a ‘‘pseudo’’ top layer removes
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ITI.

the problem. This 1s done for the top two layers
of section C2.
3

w)
of including the effects of inplane and shear stresses in

Through a comparison of k; to kz and ks to k the consequences
the top layer [i.e., ‘‘exact’’ =2quations versus equations

(1 and 2)] generally appear negligible. 1In only a few instances,
where ki is much larger than k;, are these effects noticeable.
However, in these cases - while other response quantities

may be affected — the ones shown in Tables 1 and 2 are not.

SUMMARY

In summary, the functionals demonstrate that the problem of correla-

ting the Westergaard and elastic layer predictions of ¢ and § is primarily

related to inconsistencies in material characterization. With respect

to inconsistencies in mathematical idealization, the following statements

are appropriate.

1.

Given that the difference between kl and k is less than 100%,
o appears unaffected by the idealization except
in relatively rare circumstances where Westergaard

idealization does not work (e.g., C-1 and C-3).

For the computation of &, the disparities caused by idealization
can be filtered out. That is, & predicted by the elastic layer
idealization is roughly 707 greater than that predicted by
Westergaard equation (1). To approximately predict an elastic
layer & using equation (1) reduce k by 90%.

The disparity between k and k; is difficult to interpret. It is

largely a comparison of one material characterization to another, i.e.,

k versus E and v. With respect to the objectives of this report, the

most significant question is: should k compare with k;. A corollary
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question of a more general nature is also significant: can satisfactory
responses be predicted using linear, liomogeneous, layered approximations
of so0il materlals. Although neither question can be given a blanket

answer, some general comments follow.
1
1. k versus kw.

Matching ki to k. Both Westergaard and elastic layer theories are

predicated on the ‘‘basic assumption’’ that the pavement system is
divisible into homogeneous layers whose materials have linear, homogeneous
responses to aircraft loads. This statement implies that k is mathematic-
ally equivalent to kl given that the boundary value problem solved %n
Appendix Ah is a satisfactory approximation of a plate bearing test’.

In other words — given accurately measured values of k, E, and v and
belief in the ‘‘basic assumption®’ - if a pressure load P of radius 15
inches is applied to an elastic layer approximation of the subgrade, the

predicted and measured responses must be similar.

h i.e., a uniform circular pressure applied to a layer system.

v While a plate test is reasonably approximated by this boundary
value problem, it is not exactly so, and other boundary value
problems which were deemed less appropriate, might also be
used (such as, uniform circular displacement). Also
considered was the incorporation of the effects of the plate
load hardware into the mathematics associated with the k
functional. However, because consideration of these effécts
produce complications — both in the funcional’s mathematical
formulation and its usage — for rather dubious benefits
(given the constraints of linear theory), and because
of the variability of hardware configurations, this
incorporation appears both unwarranted and inconsistent
with one of the functional’s purposes (i.e., simplicity).
Therefore, any consideration of plate hardware is omitted.
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Tables 1 and 2 aptly demonstrate that the values of k and kl may
disagree. Given that kl should equal k, these discrepancies most
likely indicate that E and v values are incorrect; in that, k is a
direct measure of insitu response garnered from a testing procedure that
is relatively easy to accomplish, while E and v are usually either
estimated or measured with rather rudimentary equipment and procedures.

At this point, at least heuristically, it must be demonstrated that
matching k to kl is a desirable goal. Certainly, o seems ¢‘unconcerned,’’
but getting the § predictions to correlate between the two methods
depends directly on this matching. Secondly, while the relationship of
simulating a plate test to a live load prediction is not “one-to-one”j
k does represent the most widely available parameter measuring insitu
conditions. To ignore matching it, would require solid contrary data.
Finally, matching k to kl provides an intuitive ‘“feel’’ for the elasti-
city idealization, which is missing in a ¢‘straight’’ elasticity solution.
Thus, it would seem that, at least as aA“base line,*’ matching ki to k

is a worthwhile goal.

Selection of E and v. Because of the complexities associated with

E and v, their direct selection based on laboratory and/or field tests

is suspect‘.7< Probably the most satisfactory means for utilizing the

J Matching k does not imply that the elasticity material
parameters can not change radically under aircraft load-
ing. For example, under the level and distribution of
loading associated with large aircraft, the soil stiffness
could be considerably stronger or weaker than that
associated with getting k! to match k.

Not only are the paramete¥s difficult to determine per se,
but their influence on the idealization — and thus, the
consequences of their erroneous selection - is hard to
follow. 1In determining these parameters, probably the
most difficult element to assess is the impact of the
insitu conditions. Often laboratory or estimated values
of E and v are employed as though the insitu conditions
didn’t exist. For a large part of the subgrade, the live
load effects on E and v are negligible compared to the
influence of such insitu parameters as: gravity and pre-
consolidation stresses, saturation, void ratio, etc.

For example, at depths graater than 2-3 feet within the
subgrade, gravitational stresses are often greater than
those produced by the aircraft.
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large variety of data that influences these quantities 1s employment of
material modelsZ. These mathematical entities coalesce the various
laboratory (e.g., triaxial test) and field data (e.g., vold ratio,
saturation) into a single coordinated representation of a material. The
model is used té calculate appropriate linear constants (E and v) as
functions of the insitu conditions, as well as either the estimated or

computed live load stresses.

Effects of Material Linearity. The following three points, while

not very specific, provide a “‘flavor’’ of the effect associated with
making the material parameters linear. As used in linear analysis,k

and E and v are linear approximations of two separate types of phenomena.
k involves what 1s essentially a one dimensional characterization of a
large, insitu soil mass; relatively large loads are added to whatever
insitu loads exist, and the results are blased by the soil nearer the
load. E and v provide a two dimensional characterization of a small
(probably distributed, certainly not insitu) soil sample under probably
higher stress levels. To measure E and v accurately requires elaborate
hardware and test procedures. To measure E alone (and estimate v), is
still a complicated procedure when compared to measuring k. In addition,
k is derived from a test which inherently forces the soill into a nonlinear,
inhomogeneous response. While E and v - computed from a triaxial test -
are nonlinear phenomena, their measurement does not create an inhomo-
geneous situation. The significant points are: that the k parameter
represents linearization of both stiffness and layer inhomogeneity while

E and v only linearize stiffness, that these two types of parameters

are generally collected from two different stress ranges, and that one

is a gross behavior for a small portion of the subgrade while the other

L Reference (5) provides an expanded discussion of material
models. These same types of models are used in nonlinear
analyses albeit more directly.
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measures macroscopic behavior and is applicable at any point in the soil
mass.

As a demonstration of the effects of linearization, equation (6) is
used to compute a variety of kl based on varying the plate radius ¢¢a?’
(i.e., kl is computed for “¢a’’ = 7.5, 30, 300, and 3,000 inches). For
the “¢A’’ type sections of Figure 5, k; is roughly proportional to the
reciprocal of ¢¢a’’. This behavior does not match the ¢‘conventional
wisdom’’ associated with field results, where utilizing plates over 30-
inch-diameter results in little change of k.

Certainly, linear theories are of benefit to pavement analysts, but
employing them to check themselves 1s seemingly an impossible task. In
order to establish the limits of their employment it is necessary to
check them against a high precision idealization [e.g., the WINDAX
computer code mentioned in Reference (5)]. In turn, this precise model

must base its verification on a few precise field tests.

Summary. In summary, k and kl is expected to agree, given appropri-
ate values of E and v. This agreement is of ¢‘base line’?’ importance
for those pavement systems where the inhomogeneities caused by the plate
load test within a material layer are of minimal importance.

Tables 1 and 2, while apt for demonstration, are based on data
which is insufficiently accurate — especially the values for E and v
~ to warrant any categorical conclusions concerning the relationship of
k and kl. Data of higher quality is needed to accurately validate the

applicability of this functional.
2. Derivation of E from k

All of the functionals depend on deriving a “‘k’’ from the elastic
layer parameters E, v, and h. Theoretically, because only linear equa=-
tions and assumptions are involved, the reverse is possible — that is,

" computation of some or all of the elasticity parameters from various

values of k. Practically speaking, this approach has significant flaws,

25




in that, the variety of k values needed is usually not available and
that the basically one dimensional nature of k does not easily extend
itself to the two dimensional nature of elasticity. However, to a
limited extent and in simple circumstances some of this ¢‘reverse’’

computation is relevant.
3. Basic Assumption Versus the Real World

The developments presented In this report are predicated on the
‘‘basic assumption’’ — pavements are composed of homogeneous layers
whose materials remain homogeneous and linear under aircraft loads.

There is enough evidence [e.g., Reference (5)] to support the conclusion
that flexible pavements do not abide by the ¢‘basic assumption.’’ For
rigid pavemeﬁts a significant lack of data has hindered such conclusions,
although some tests (5) of rigid pavements on substandard subgrades
significantly deviate from linear theory.

Moreover, if o is the only design criterion, the impact of one
idealization versus another, or *‘‘basic assumption?®’ versus the ¢‘‘real
world’” is blunted. To a lesser extent, this is also true of §. However,
future design procedures will rely on more extensive criteria, for
example, maximum shear strains within each subgrade layer. The predic-
tion of criteria, such as these, is more sensitive to material character-
ization and certainly requires procedures more sophisticated than

Westergaard and also probably more sophisticated than elastic layer.

IV. CONCLUSIONS AND RECOMMENDATIONS

The data presented in this report leads to the following conclusions.
These conclusions are predicated on the sections shown in Figure 5 and
are made within the context of linear analysis. Without further valida-
tion, it is unreasonable to assume — [or either sections dissimilar to
those shown or for loadings significantly different from those used to

generate Tables 1 and 2 - that these conclusions are appropriate.
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Computation of peak tensile stress in the concrete layer is
relatively insensitive to the subgrade material properties.
For a reasonable set of material values this stress can be
expected to vary by only 10%.

The Westergaard idealization consistently under predicts
the peak deformation computed by an elastic layer system.,
For the sectlons shown in Figure 5, this disgparity is
roughly 70%Z. To approximately compute the clastic layer

deformation using a Westergaard idealization, reduce k by 907.

If k; is greater than kl, then the Westergaard idealization

i? inapPlicable (see Section ITI.3 for the definition of k; and
kw).

Comparing k with k;, provides a measure of the accuracy with
which the material parameters of the elastic layer system were
chosen. Comparisons with k involving the other functionals is
not consistent, in that these functionals, unlike k, are depen-
dent on the top layer’s material parameters and the aircraft

loading.

The applicability of both the Westergaard and elastic layer
idealizations In predicting design criteria, other than

peak stress and deflection, is questionable.

Equations (1 and 2) are of sufficient accuracy to solve the

Westergaard idealization.

The following recommendations appear warranted based on the data

presented in this report.

1.

Utilize the ELAST computer program, described in Appendix C, to
compute a rigid pavement’s peak stress and displacement. These
responses are computed by both the elastic layer and Westergaard
methods of analysis. Additionally, ELAST computes several

quantities, denoted as functionals, which provide a ‘‘bridge”’
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between the predictions of these two methods. These quantities
are intended to assist the engineer in deciding on the

applicability of one method versus another.

Conduct tests of a series of rigid pavement systems. This
series shall be designed to test the “‘basic assumptions’’ and
peak deflection predictions of the Westergaard and elastic
layer theories, and to establish the validity of the kl
functional. Important components of these tests are accurate
measure of all material parameters (i.e., E, v, and k); close
contrel of material placement and preparation; test sections
that are specifically designed to validate anmalytical theories;

and comprehensive and accurate measure of the pavement section’s

response to large (over 80 kips) axisymmetric loads.

Based on these tests, establish the need for more precise
determination of the material parameters E and v for use in
conjunction with the k& functional and elastic layer analysis.
If necessary, material models should be developed to provide
more effective use of the data associated with the selection
of E and v. It is especially important to have a means for

incorporating the gravitational effects into their determination.

Various finite element idealizations should be compared with
those of both elastic layer and Westergaard to determine
limitations of the slmpler theories. This, however, can only
be accomplished using test data of a higher quality than is

presently avallable.
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Appendix A
MATHEMATICAL DESCRIPTION FOR THE MULTILAYER ELASTIC PROBLEM

The multilayer elastic problem consists of N layers of homogeneous
linear elastic material of infinite lateral extent (Figure A-1). ' The
layers are numbered from top to bottom. Each layer (n) has a Young’s
modulus (En)’ a Poisson’s ratio (vn), and a thickness (hn: except for
the Nth layer which has an infinite depth). A uniform pressure (P) is
applied over a circular area of radius (a) to the top surface of the top
layer. The problem is to find the downward displacement [w (0,0)] at T
and the lateral stress [orr(O,h1)] af B, where T is the origin of a
cylindrical coordinate system (R,Z). The Z coordinate is positive
downward, and for this problem the spatial coordinate r will always be
zero. The layers are taken to be bonded at their interfaces.

Because the problem is axial symmetric, it is governed by a single

stress function (¢) and the following differential equations [Reference 6].

v = 0 (A-1)
2. 32
o = — v - —% (A=2)
rr 3z or
3 2 82
o = 2 J2-v) V¢ - 3 (A-3)
zz 2z 9z
[ 9 2
o =3 (1=-V)V7¢ - 9 3] a-4)
rz or | dz
14+ [ 2 82
w = — 2(1=v) V7¢ - g ] (A-5)
E | 9z
1+\) r)2() |
Y5 T TE ooz (4-6)
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2

where v

The above equations are

9

2 2

3 1 9 )

2 Tt T2
r r Odr 9z

o = radial stress
rr

0 = wvertilcal stress
7.7

g = ghear stress
rz

vertical displacement

u horizontal displacement

applicable for each layer.

(A=7)

The boundary conditions at the layer interfaces (assumed bonded)

are:
OZZ(r’ Hn) -
O:z (r, Hn)
W(r, B =
' (r, B) =
where Hn = ig

and n and n+1 are indices of adjacent layers.

at the top are:

0,y (r, 0)

Orz (rf 0)

|

n+1
922 (r, Hn)

0n+1

rz

(r, Hn)

n+1
w (r, Hn)

n+1

u (r, Hn)

-P for O<r«<a-
0 for r>a
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(A-11)

The boundary conditions

(A-12)

(A-13)



The general solution employed for the basic differential equation
(A=1) contains four constants for each layer. The other differential
equations (A-2 to A-6) and the boundary conditions (A=-8 to A-13) are
employed to determine these arbitrary constants.

To provide a tractable solution method, Hankel transforms [LO, L1]
are employed.

L () =¢= / r¢J _(pr)dr

O
where JO is a zeroth order Bessel function of the first kind

b is L0(¢) where the bar denotes a transformed variable

p is the transform parameter

L E_ = B_g rJ, (pr)dr
1 1
or or

where g 1s any arbitrary function of r and z

J1 is a Bessel function of the first kind, first order

Use of these transformations change the problem from the r,z space to
the p,z space which changes the partial differential form of equations

(A-1 to A-7) to that of ordinary ones [Reference 7].

Thus for V2¢ -0 + 12 + 90 ¢ (A-14)
2 2
ar r or 0z

use of the Lo Hankel transform results in

o) ’ oo 2
L (V%) = 9% 3 (pr) dr = r 2% 5 (prydr +
0 o 3r2 o
0 0
Tog " 9%
f — Jo(pr)dr + f r — Jo(pr)dr
0 ar 9z
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= r?#:.\] (pr) - f—%—%r— [rJo(pr)] dr +

TG oeydr + %0 5 (e
f hr Vo PrIdr o r772 o \PTICE

8]

lt is assumed that the function ¢ 1s such that the top limit of the

first term goes to 0, so

L0 (\72¢) = = f—g—% Jo(pr)dr + /pr J1(pr)dr
) 0

3¢
ar
“3¢. 2%
+Of 5T Jo(pr)dr + r 322 Jo(pr)dr

3¢ 52
= fpr E—J1(pr)dr + 5 fr¢J0(pr)dr
) 9z~ o
OLE (CR) ’ ‘ 2-
=  ¢prd_ (pr) - ([)—Q—-— prJ, (pr)| dr + ) ¢
1 . 1 2
_ or . 0z
=0 o
3 523
= = po [prJ1(pr) dr + 29
2
o opr dz
2- [es]
= 3¢ / p2r ¢J (pr)dr
2 o
oz
o
2 52% 2=
or LO(V ¢) = ) - p¢ (A-15)
oz

Secondly, using 1., for any arbitrary function [g(r,z)] the following

1
is true:
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srJ, (pr) - / g %r— [rJ1(pr)] dr

r=0 o

33 o0

3 ,
- f 8 Spr IprJ1(pr)] dr = - / gprd_(pr)dr

(o] o]

(=]

or L, (3&) = - f grd_(pr)dr = - p L_(g) (A-16)

o
Equation (A-1) is now ready to be transformed. Applying equation
(A-15) twice to equation (A-1) yields

2

2
d ' -
[ = - pZ] 3 = 0 (A-17)
dz".

The general solution for this ordinary differential equation is

;o= [a1(p) + 0t3(p)z] eP? 4 [az(p) + a4(p)z] e P? (A-18)

The o are arbitrary constanfs to be determined by the various boundary
conditions and other differential equations. There are four such con-
stants (denoted an) for each layer which are constant with respect to
the differentiation variable z but vary with transform parameter p. The
o are sometimes referred to as the characteristic functlons.

To determince the o, the problem is worked from the bottom Interface
(z = HN-1) to the top (z = o). To start, the differcential equations
(A-3 to A-6) are transformed, then equations (A-8 to A-11) are applied at

the interfaces. Upon transformation equations (A-3 to A-6) are:
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3- -
L(o,) = 5 (2 = (-wi- -t a9
dz dz
- d2$ 3 -
Ly(0,,) = o_,(2z) = vp -d—zz— + p7(1 = V)¢ (A-20)
- 1+v a%s 2=
L (w) = w(p,2) = (1 = 2v) = 2(1 - v)p“¢| (A-21)
o 2
E dz
L@ = G,z - RLEY 4 (A-22)
Equations (A=8 to A-11) are similarly transformed
-n _  =n+1
0, PoH ) = o (p,H) (A-23)
-n _ =n+1
o.,psH ) = o = (p,H) (A-24)
-n _ =n+l
w (P,Hn) = W (Pan) (A-25)
- -n+1
MeE) = 3 p,H ) (A-26)

For the nth layer, the transformed stress function and several of its

derivatives are:

&(p,z) = ’a1 + ag z] eP% 4 [a; + anz] e P2 (A=-27)
{E% = ’p(a? + agz) + ag] eP?
- [P(u; + azz) - aZ] e P? | (A-28)
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d ? = p(punz + pan + 2an) eP?
2 3 1 3
dz
n n _ n -pz -
+ p(puaz + pa, 2(14) e (A-29)
d3- 2, n n n z
L p (pu,z + a,p + 3a.) eP
3 3 1 3
dz
- 2, n n_ ,n, =pz -
p (po,z + pa, - 30,) e (A-30)

f
By substitution of equations (A-27 to A-30) into equations

(A-19 to A-22) then applying the interface equations (A-23 to A-26),
the following interface equations are derived (between layers n and

n+1).
n pH
[-p o + aq (1 - pHn - 2vn) e’ 'n

n n _ -pH
+ Ip a, +a, (pHn 2vn+1)‘ e n

_ - n+1 n+1 - _ pH
= [ p + o (1 pHn 2Vn+1)] e’ ' n

n+1 n+1 . ] -pH -
+ [p a, + o, (pHn 2vn+1 + 1) e n (A=31a)

_..n n _ _ pH
[ poy, + oq (2 pHn 4vn)l e 'n

- n n - _ -pH
+ [ P o, +a, (4vn PH_ 2)‘ e n

_ .n - n+1 n+1 - - PH
= 61 [ P oy + a3 (2 pHn 4vn+1)] ¢ n
n - n+1 n+1 - _ -pH -
+ 6 l p ol + ofT (hv - pH 2)] e P (a-31h)
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_ n+1 n+1 pH
= [p a, + aq (2vn+1+pHn)] e’'n
n+1 n+1 -pH
+ Ip ST G e - 2 +1)] e PH, (A-31c)
PH
Ip @, + g (pHn + 1)] e’ n
- n - -pH
+ [ P a, +a, (1 pHn)] e " n
_ ,n n+1 n+1 pH
= 81 [p o, + aq (pHn + 1)] e’ 'n
n n+1 n+1 : -pH -
+ 8 [ p a4 o8 pHn)] e PH, (A-31d)
n En a1+ vn+1)
where 81 =
En+1 a+ vn)

The above system of four equations (A-31) 1s solved for o in terms
of an+1, which are presumed known. Fortunately, no algebraically cumber-
some determinant computations are necessary. The symmetry in this
system is such that merely adding the equations of (A-31) after appro-

priate sign changes, will suffice. For example, adding the four equa-

tions (A-31) as they are will leave ag by itself on the left side, a?,
a;,and az cancelling out. Changing the signs of equations (A-31a) and

n
4

right. Some additional substituting is necessary to get a? and a;,

namely the just acquired expressions for uz and uz. The results of this

series of additions are the recursion formulae, which provide the basis

(A-31d) and then adding the equations (A-31), yilelds o, by itself on the
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for the solution of the multilayer elastic problem and are the heart of

the ELAST computer program (Appendix C). The recursion formulae for the

n
o are:
n -
4oz3 1 vn)
n+1 _ o0y _=2pH n_n+l n+1 _ o0y o0 _=2pH
2PG2 “ 31) e n + B6a3 +a, (1 81) By e n
n —
Aaa (1 vn) =
n+1 n _ 2pH n+1 n _ n 2pH nn
2 oy (31 1) e 'n + oy (81 1) B4 e 'n + 86a4
n
l&po¢1 (1 \)n) =
n_n+1 n+1 n _ n -2pH n_n+1 n nt+l  -2pH
pBZa1 + pa, (B1 1) 67 e n + 88a3 + 81004 e n
n —
4pa2 (1 vn) =
n+1 n _. n 2pH n n+1 n ntl 2pH n n+1
pa, (B1 1) Bg e n + pBya,  + 611a3 e 'n + 89a4
n _ n _
where 62 = 81 4vn + 3
n
83 = 2pHn - 4vn+1 + 1
n
84 = 2pHn + 4vn+1 1
n
BS = 4vn ZpHn 1
n n
86 = 31 3 4vn+1) + 1
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(A=32b)

(A-32¢)

(A-324)



=
n

Avn + 2pHn -1

Bg = (B = 1)(8v v, = 2pH + 1) + 4pH_ (8] v_ . = v )
-6 (B? Vo T vn+1)

Bg = (1 - B?)(Svn A + 2pHn +1) + 4pHn (B? Vg1 T vn)
+ 6 (B? Yo~ Vn+1)

n _ .0 _ . - n
Bl, = (B = 1 [(2pHn by )2y + pH ) + 1] + 285 v_

10
- 2\)r1+1

BT, = (8] = D l(&vn - 2pH ) (PH_ + 2v_, ) - 1] - 2687 v
+ 2\)n+1

For convenience, the following substitutions are made in equations

(A=32) to obtain the final form of the recursive equations

pa = X (A=33a)
4 n n :
proy = -PaA1 J1 (x) (A=33Dh)
4un = -PaA” J. (x) (A=33c¢)
P 9y 2 71 A ¢
p3an = -pPaA” J (x) (A=-33d)
3 371
poa® = -PaA® I, (x) (A-33e)
4 4 1
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n n e-ZpHn

AL = A5
An = An e-ZPHn (h=38)
3 6

The A1 constants will be in the final stress and displacement formulae.
The last two substitutions [equations (A-34)] are made to remove positive
exponents of ¢‘e’’ which during computations may become too large for

the computer to properly handle. The final recursive formulae are:

GAT (1= v) = 8) A2+1 e 2Py 4 8% (8% - 1) AT+ ) AT e 2Phn
+ Bn An+1
10 A4
G (1= v ) =80 @7 - 1) AT &Py
+op AT 4 g AT P 6 AT (an3s)
4ay (1= v ) =201 - 8 AE*’ + B8y A2+1 e 2Phniq
+ Bg‘ (1 - 8P A’ZH
G (1 - vy = 2087 - 1) AT @7 2PPnyg
+ 8y (8] -1 AZ“ e %Phnyy 4 By A2+1

From equation (A-27) where n = N it is seen that for ¢ to be bounded

requires that u? = 0 and a§ = 0. This implies from equations (A-33 and

A-34) that

w =2
z
z
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Therefore, the recursive formulae [equations (A=-35)] evaluated at the

N-1, N interface are:

wy T - v ) = By Ay o+ Al (A-36)
TOMNC I 20501 - By + gy - 8 ha)

Starting at the bottom interface with equations (A-36) and proceeding
upward through repeated applications of equations (A-35), four expres-

sions [equations (A-37), not shown because of thelr extreme length] for
the top layer constants [A;, Al, A;, and A;] are developed. These four
new equations (obtained from compatibility) are expressed in terms of _
Ag and AE. Through combining equations (A-34) [which relate Al to A;,

and A; to Aé] and equations (A-37), the four independent (with respect

to 2), arbitrary, top layer constants [A}, A;, A;, and Al] are defined
. . N N
in terms of A2 and AA'

N
2
the boundary conditions at the top layer are applied, equations (A-12

To complete the solution (and in essence solve for A, and AE),

and A-13). Transforming equation (A-12) yields:

a
ozz(p,O) = = “/” PrJo(pr)dr = -l;f ./'{;l prJo(pr)dpr
o P o
a
P
= -3 [er3 0] = -85, (pa) (A-38)
P r=o p

and from equation (A-13):

Grz(p,O) = 0 (A-39)
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Using equation (A-19), in conjunction with equations (A-28 and A-30), at
z = 0, the following is obtained for equation (A-38).

4, 1 1 3 1 1
p (a2 u1) + p (1 2\)1)(0:3 + aa) = -PaJ1(pa)

Making the substitutions from equations (A-33), the final form of this
boundary condition is:

Al - Al + (v, - 1)(A; + Al) R (A-40a)

1
Similarly for equation‘(A-39) the following boundary condition is derived,
with the aid of equations (A-20, A-27, A-29, and A-33).

1

1 1
A1 + A2 + 2\)1(A3 - A

1

4) = 0 (A-40b)

From the previous discussion, it was shown that [A1, A;, A;, and

Al] are obtained from the two non-zero bottom layer constants, A2 and

AE. Therefore equations (A-40) can be written in terms of Ag and AE,

getting
K1A1; + K2AIZ = 0 (A-41a)
K3A§ + K4A§ - -1 (A-41b)

The introduction of the K constants provides a simplied means of solving

equations (A-40) for the two bottom layer constants. By setting Ag =

1 and AE = 0 and plugging equations (A-37, not shown) into equations
(A-41), the coefficients K1, K3, are obtained as the left membe;s of
equations (A-41). Similarly K2 and K4 are derived by setting A2 = 0
and AE = 1., Then AZN, A4N, are obtained by solving equations (A-41),
F%nally, by plugging Ag, A4N into equations (A-37), we get [A:, A;,

A

1
3 A4] at the top.
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Next, the stress [Orr(o’h1)] is derived. First, some auxiliary

Bessel fuhction relationships are established.

-%; [xiJi(x)l = xiJi_1(x) (A-42)

%; [x-iJi(x)] = -x-iJi+1(x) (A-43)

for i = o, equation (A-43) gives

Jé(x) = - J1(x) (A-44)
and for i = 1, equation (A-42) becomes

J1(x) + xJ%(x) = xJo(x)
Recalling from equation (A-33a) that x = pr, the above becomes

prJ;(pr) = prJO(pr) - J1(pr) (A=~45)

Second, some functions of ¢ are derived using the inverse transform,
. -1
[i.e., L '].

203

'@ = 0 = f el e (A-46)
O

30 _ [ 2=, _ e
and == = f p¢JO(pr)dp O-/<1>'¢>J1(pr)dp

0]

which results in

13 fp24>___dp (A=47)
O
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o

2 o0 . Jr(pr)
and ¢ - . p3¢J (pr)dp = - p2¢pr1— dp
81'2 o 1 r

which when combined with equation (A=45) becomes

2 ] J. (pr) ®
3 2= 1 3=
—2 = f p ¢ —dp - fp ¢J (pr)dp (A-48)
or o} r o
Bzd)
To find 7 use equations (A-46 and A-18) to obtain
dz
. pz -pz
¢ W/‘I(p(” + pcx3z)e + (pOL2 + p(xl‘z)e Jo(pr)dp
3 _ 12 2 pz o2 2 -pz]
then =~ = of Ip a, +pag+p a3z)e + (paa pa, =P uaz)e Jo(pr)dp

and finally

+ (p3a2 - 2p2u4 + p3a4z)e-pZ]Jo(pr)dp (A-49)

82¢
2

dz

To start the computation for <1rr |equation (A~2)], the following
oxpression is evaluated by substitutions from equations (A~14, A-18,
A=47, A-48, and A-49).

2 o
2 9 « 3-
woe - —; = =V fp ¢J (pr)dp

or 0

[S8

2 3 3 pz
+\)()f IZpu.3+pu.1+pa32)e

+ (pj(n2 - 2,)2(14 + p}uaz)e-pz .'Io(pr)dp

43




78

o

+ fp3<530(pr)dp
O

By consolidating the first two terms and plugging for <-1;,

2v /y(pza3el)z - p2<14e-pz)‘]0(pr)dp

Q

- 2 2 pz 2 2 -pz]
Of [(p o, + p oc3z)e + (p o, + p uaz)e

Finally, using

g r,z
L (5,2)

equation (A-2),

il

> (vV2¢ -

3 pz 3 -pz
(f (p tge + p e )Jo(pr)dp
Tk 4 3 | pz
Of [(p a + p ay z + p <x3)e

3 4 4 -
( @, = pu, - paAZ)e pz] Jo(pr)dp

0/ ‘(pjw.1 + ])3(137. + |)2(13)epz

-pz .I](pr)

(pzuz' - p}u - |)3(142)v dp

2
r
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J1(pr)

- / [(pzu + pzu z)epz + (pzu + pza z)e-pz — dp
. 1 3 2 4
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Combining terms,

f l + p3a3(1 + 2v + pz)]

3 ,
+ |- p @, + p (14(1 + 2v = p2z)

(x'pzl .]O(pr)dp

llp w, + pz<13(1 + pz),

(pr)
2 -pz
- paz + pa4(1 - pz)l ep/]———dp
r

Evaluating Oy at the point of interest (i.e., r = 0, z = h1) and noting

that at r = 0, JO(O) =

J, (pr) p
and also lim —_— = —
rs0 r 2

The following expression for L is obtained

)r(O,h1) = f“p[‘a} + p3(x1(1 + 2\)] + ph )I 1
0

+ [- p4a; + p3a'(1 + 2v, - ph1)| e'ph1\ dp

'_1_fl[p4a: + p3(1;(1 + ph])]‘ eph1
0

+ ‘- pAu; + p’}(xl(1 - pll])l O-phl‘ dp

where the superscript | denotes the 1st layer
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= 1/2 J(.’ |p4u1 + p3ug(1 + 4v1 + ph1)] eph1
0
4 1 3.1 - -ph
+ I P o, + p a4(1 + 4v1 ph1)] e 1] dp
Substitution from equation (A-33) yields

_ P ] 1 ph
Orr(o’h1) = 20./ “A1 + A3(1 + 4\)1 + ph1)] e 1

+ |- a

1 - -ph
, + A0+ b ph1)] e 1’ 3, GOdp

Substitution from equation (A-34) yields

P T 1 1 1 1
o__(0,h,) -70f|A5 - A, F A+ ADMGY, + D)

1 1 -ph -
+ ph1(A6 A44 e 1 J1(x)dx (A=50)

Equation (A-50) is used in the ELAST program to evaluate Orr(o’h1) —
referred to as ¢ in other parts of this report. The integration is done
numerically, using Gaussian quadratures, as will be explained later.
Now, the expression for the downward displacement at the top of the
layered system 1s derived. Starting with equation (A-21) and substitu-

ting from equation (A-27 and A-29) at z = 0, the following results.
wip,0) =

21 1 21 oo 1
1 Zvl)(p @, + Zpu3 + p y - ZpuA)
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+ (2\)1 - 2)(p2a + pzotj,Z
1 + vy
= 2 2 1 1
E1 Pp a, p a + 2p(a3 - aa)(1 2v1)]
1T + v .
= L l- p4a1 - paa + 2p3((11 - (1])(1 2v )I
2 3 4 1
P ]'11

Substitutions from (A=33) gives

- Pa(l 4v,) 1 1 1 1
w(p,0) = % Ay + A+ 2v, - DAy - AP[ T

1

Performing the inverse transform yields

00

w(r,0) = /pCJ(p,O)JO(pr)dP
O

[

and w(0,0) =f|w-v(p,())dp
o

Thus,
Pa(1l + \)1) w0 ' 1 1 1 J1 (%)
w(0,0) = ———m [A + A, + (4v - 2)(A - A) dp
1 2 1 3 4
E 0
1
and finally the formulae used in the computer program:
Pa (1 +\»1) S 1 1 1 J](X)
= — /i - y - t
w(0,0) “f IA1 + A2 + (4\)1 2)(/\,; AA) ; I1x

I".I
(A=-51)
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Elsewhere in this report w(0,0) is referred to as 6.

The integration of equations (A-50) and (A=51) is performed numeri-
caliy by means of Gaussian quadratures using roots of Legendre polynomials
[References 8, 9, and 10]. Although Gaussian integration is done between
finite limits, it can be used for impfoper integrals such as equations
(A-50) and (A-51), whose integrands approach zero for sufficiently large
values of the variable of integration x. 1In the program ELAST, the table
of Reference 10 for n = 16 is used; and integration is over either three
or four intervals of x, as determined by a test on the negative exponen=-

tial factor of equation (A-50).

48



pressure P

e— 2
Y
T o
Eq vy hy
B
Byl 1y, hy

En-1.¥N-10 PN

EN' VN

N -t

Figure A-1. Multilayer elastic half space.
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Appendix B

¢ “EXACT’’ SOLUTIONS FOR THE WESTERGAARD IDEALIZATION

Computation of the Westergaard functionals, ki and kl, requires
solution of the Westergaard problem and solution of an elastic layer
problem, such that,a k is computed which produces identical results for
equations (1 and 3) and (2 and 4). Equations (3 and 4) are the ¢‘exact’’
solution for the layer elastic problem, but equations (1 and 2) are
only first order approximations for the solution of a plate on a fluid
foundation [Reference 11]. Equation (1 and 2) appears to be valid for
the traditional applications of a rigid layer over a relatively soft
subgrade. For pavements where this distinction does not exist or is
marginal, erroneous results are obtained. While this problem may be of
little practical significance because most applications provide a clear
distinction between subgrade and pavement surface, it was deemed necessary
that more refined theories be used for derivation of the functionals. Two
refined approaches were taken resulting in two versions of the ELAST
computer program., The first involves adding additional terms to equations
(1 and 2); these additional terms were included in Westergaard’s original
work |Reference 11] but are generally ignored in normal applications.

The second approach is completely different from the first, being based

on the solution for an elastic layer media presented in Appendix A.
1. EXTENDED WESTERGAARD APPROACH

The extension of Westergaard®s simplified equations (1 and 2) -~
for solving the problem of a laterally infinite elastic plate resting on
a fluid (Figure 1) — will not be shown here, since some background is
required and it is already in the literature |References 12, 13, and 14].
Refercence 12 furnishes the background in plate theory, and Refercence 17
addresses itself to the particular problem while Reference 14 may provide

additional support.
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The two equations used for maximum lateral stress and peak displace-
ment are, respectively, equations (5.2) and (4.6) of Reference 13. These

along with some auxiliary equations follow.

Equation (5.2) is

(1T + Vv)Kei' b

rr ,
nwhh

]

where F uPaz, the total force applied to the plate

= . ki 1/4
b-a(D)
Eh3
D = —————— ,known as the flexural rigidity
2
12¢1 = v7)
Vi.6a? + n2
a = 1.6a~ + h -.675h, 1f a<1.,724h
a , otherwise
k = density of supporting fluid (the Westergaard constant)

or alternatively

3Paz(1 + v)Kei’b

o = (B=1)
rr bh2
Equation (4.6) is
P 2(1 + bKer’'b
w = a er’'b) (B-2)
, 2
ka

The Ker and Kei functions whose derivatives appear in equations

(B=1) and (B-2) are:
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Ker b = -g + b + 2g = 3 b4 _ _Tb + 25 = 12g b8
16 128 9216 1769472
10
+ b + 20& - 49 b12
58982400 42467328000
1 mh 4bg - 5 .3 'lrbs 47 24g 7
Ker'b = =~ — + + b™ - + b
b 8 64 1536 442368
P S
5898240
i 1 g 2 Trb4 6 - 1 6
Kei b = = — + L & b
13824
8 .
L 1.37 - .6g b'° N b 2
589824 8847360 8493465600
! b(1 - 2g) ﬂb3 3g - 5 5 nb7
Kei b = + + b™ - —_—
4 64 1152 73728
+ 13.1 - 6g b9
8847360
where g = vy + In 57722 + In.2
2 2
so thatiﬁi = .l_
ob b

The formulae givén here for the derivatives Ker'b and Kei'b contain the

number of terms currently used in the “‘red deck?’’ computer program

(described in Section B-=3).

52




2. ELASTICITY APPROACH

Solving the Westergaard idealization (Figure 1) using an elasticity
approach, employs the same set of differential equations and the same
Hankel transform method used in Appendix A for solving the multilayer
problem.  Only the boundary conditions on the bhottom of the elastic
layer arce different.  This approach is felt to be more accurate than
the coxtended Westergaard approach.

As before, a circular pressure load of radius a rests atop the
elastic layer of thickness h. Again, the differential equations (A-1 to
A-6) apply, along with equation (A-7) and boundary conditions (A-12 and
A-13). 1In addition, we have the following boundary conditions at the

plate’s bottom surface.

- kw(r,h) (B-3)

czz(r,h)

0 (B=4)

) r,h
o (£,

where k is the fluid density.

Applying the Hankel transform ILo]’

o

Gzz(p,z) = J/h pozz(r,z)Jo(pr)dr

0

Using equation (A-19) and substitutions from equations (A-28 and A-30),

the following is derived.

- i i i pz
UZZ(P,Z) l ap + a3(1 2v pz)l e

il
e’

e 2 (B-5)

+ p‘2 Iazp + uA(I - 2v + pz)
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Similarly, using equations (A-21, A-27, and A-29) yields

G(p,z) = 1+v l [-p2a1 + pa3(2 - 4y - pz)] eP?

E

+ [-pzaz + pa4(4v - 2 - pz)] e-pz] (B-6)

Applying equation (B-3) in transform space with substitution from
equations (B-5 and B-6) gives

[-a1p2 + a3p(1 - 2v - ph)] eph
+ [a2p2 + ap(l = 2v + ph)] ePh
= k@ _+ v [[-pu1 + a3(2 - 4v = ph) ePh
E
+ [-pa, + a4y - 2 - ph)l e'phl (B-7)
Using substitutions [equations (A-33)] and
L = k(1 + v) i
E
equation (B=7) becomes
AL+ L)+ Ay |(1 = 2v - ph)(p + L) + L(1 - 2\))} e
+ lAz(p - L)+ A |(1 - 2v + ph)(p - 1)
- L1 - 2\))] e Ph 0 (B-8)




Next, the boundary condition [equation (B-4)] is applied using
equations (A-20, A-27, and A-29).

[pa1 + a3(2v + ph)] eph
-ph
+ ipaz + aa(ph - 2v) e = Q0 (B-9)
Using equations (A-33) and multiplying by p3, equation (B-9) gives
'{AI + A3(2\) + ph)l eph
-ph
+ iAZ + A, ph = 20| e = 0 (B-10)

The two boundary conditions on top of the plate are the same as

those of Appendix A [equations (A-40)] and are as follows.

A - A, + (2v - 1)(A3 + A = =1 (8-11)

1 2 A)

A, + A ) = 0 (B-12)

' 9 + 2\)(A3 - A

4

This system of equations |equations (B-8, B~10, B=-11, and B-12)] is now

solved for the unknown constants (A). From equations (B-11 and B-12)

1]

a - A\J)A3 + A, - 1 (B-13)

2A 4

28, = (4v - 1)A4 - Ay 4 1 (B-14)

Substituting equations (B-13 and B-14) into equation (B-10):

_ - .~2ph _ ~2ph
(1 Al&) (1 e ) 21)11/\/4(.

3 1

(B=15)

o-ZPh + 2ph
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Substitution of equations (B-13, B-14, and B-15) into equation (B-8)

vields after a rather lengthy algebraic process

.-2ph 2. =2ph +

A, = € ) Ip + 2L(1 - ) ] + 2p°he”

-2ph

p + 2L(1 = V) + 2pe |4hL(1 N N P

+ |p - 2 - \))l o~

A1, A2, and A3 are then computéd using equations (B=13, B=-14, and

B=15). A5 and A6 are defined as before using equations (A-34).

Having now obtained the layer constants [A1"'A6] the expressions
for Orr(o’ h) [equation (A-50)] and w(0,0) [equation (A=51)] can be
evaluated. This is accomplished in a manner similar to that described

in Appendix A.

3. COMPARISON OF APPROACH 1 AND 2

The variation of results, for the two approaches 1s demonstrated
using the pavement sections of Table B-1. These sections are designed
to mathematically test the prediction techniques, which results in
rather strange pavement systems. Two separate computer program were
written to solve for the stress functionals k; and ki — the “‘red deck”’
employs the extended Westergaard approach while the ¢‘brown deck?’’
employs the elasticity approach. The first and second columns of Table

B-2 show the stress functional, kl, computed by the ‘‘red and brown

decks’?’, For pavement systems which arc¢ normally encountered, there is
satisfactory agreement between the two approaches. VFor systems which
probably have no significance, major discrepencices appear. While current

applications produce no need for the ¢‘brown deck??’ relinements, it is
felt that usage of the ¢‘brown deck’’ with its inherently more rigorous

approach avoids any potential future problems and that the additional
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computer costsk incurred are of no significance with respect to the
anticipated number of runs. All computations presented elsewhere in
this report are accomplished using éhe ‘‘brown deck.’’ Column three of
Table B-2 shows the stress functional k2 The difference between k2
and k is a measure of the error incurred when equation (2) is used to
predlct the stress o for a Westergaard idealization, instead of either

the ¢“‘red or brown deck.?”’

Cost of running the ¢‘brown deck’’ is approximately 3 times that
of the ‘‘red.?’
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Table B-1. Mathematically Selected Pavement Sections

L Number of Layers in the Pavement Section?
Scection
Number 1 2 3 4 5 6 7 8 9 10
6b 3 3
3x 10 10x103| sx10 500
1 0.15¢ 0.2 0.25 0.4
124 24 36
3x 106 | 5x10%]2.5x103 500
2 0.15 0.2 0.25 0.40
12 24 36
g t0d | 4ax10t | 2x10% | 2x10%
3 0,4 0.2 0.1 0.4
1o 32 48"
a0 s rod vxi00 3t}
4 .15 a3 0.4 o.1
O 16 O
7103 | 55103
5 0.4 0.2
12
4x106 [ 3x103| 3x100 1x103 3x 100 500
6 0.2 0.4 0.1 0.3 0.1 0.4
3 16 5 18 4
3100 | ax104]| 3x10% | 2x10% | 1.5x10% | 10x10%4 | 5x103 | 2x103 | 1x10% | 500
7 0.2 0.4 0.3 0.1 0.3 0.2 0.4 0.15 0.3 0.4
6 20 16 10 20 15.0 17.0 30 14
ax109 | 3x10?| 2x10% | tsxt0f | 1ox10f | sx103 | 25103 | 15103 500
8 0.4 0.3 0.1 0.3 0.2 0.4 0.15 0.3 0.4
20 16 10 20 i5 17 30 14
te10d | ax10d 500
9 0.3 a1 0.2
10 12
tos 03] 3100 s oY | 20x 103
1O 0.3 0,15 0.4 0.3
12 0O 18
30x 103 20x 103 15 x103 | 5x10?
il 0.2 0.0 0.0 0.5
36.0 15.0 17.0
sc10d | sx103
12 0.2 0.2
12

4 Layers are numbered starting at the top of the section,

) .
Young's modulus in
v

‘psitt for the layer,
Poisson’s ratio tor the layer,
o Layver thickness in inches.
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Table B-2. Comparison of Stress Functionals

Section k; ki
Number ¢¢Brown Deck?®?’ ¢¢Red Neck?’ Equation (2)

1 30 30 34

2 894 930 1,045

3 39,000 >99,999 >99,999

4 61 63 48

5 >1.0 x 106 >106 9,619

6 206 195 180

7 2,314 2,628 1,824

8 >1O6 >99,999 >99,999

9 np® np? np?

10 NP NP NP

1 7106 >106 >99,999

12 >10° 74,197 7,031

a . ; .
Compressive stress in bottom fiber of plate:
solution not permissible.
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Appendix C

ELAST COMPUTER PROGRAM

The equations derived in Appendices A and B were used as a frame-
work to build the ELAST program. This code solves for the five functionals

described in Section I1: k;, ki, kz, kl, and kz. In addition, ELAST

computes the responses for the elastic layer and Westergaard idealiza-
tions — cquations (1 to 4). . The program computes these quantities for
up to 10 layers ol material for any specified radius and magnitude of
load. The input consists primarily of specilication For each layer of
E, v, and thickness. The user manual for the ELAST computer program is
shown in Figure C~1. Three different card formats are required to

define a single problem. As many problems as desired may be stacked one

behind another.
1. Example Problem

The following input data for the ELAST program was obtained from
section A2 of Figure 5 and was used to generate the results shown in

Figure C-2.

Cad “ m 20 30
(‘UllII’lHIV | | 1 ) 1 _ | . —_ —

SECTTON A2 TABLLE 5 CRUSHED LIMESTONE AND GRAVIEL SUBGRADIE

3 42,77 15.0  300.0
7500000. 0.2 8.0
33000. 0.3 24.0
6000. 0.3 24.0

STOP

2. Discussion of Output

The output consists of a reflection of the input (i.e., The input
data is written out when read to aid in debugping). Also output are
the functionals and the o and & predicted by the clastic layer or
Westergaard analyses. The output is shown in Figure C-2. “The ELAST
results are shown in tabular form.

The first row of the table [title: MODULUS OF SUBGRADE REACTION|

has the units of pounds per cubic inch. The conceptl of replacing the
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stiffness of the various subgrade layers with a single constant comes

from Westergaard. The advantage of this is reducing the multilayered

soill problem to that of a plate on an elastic foundation. The functionals
calculated in the code will be different depending on the criteria
employed, thus, providing several ways to relate the elastic layer and
Westergaard solutions. The second row [title: STRESS IN BOTTOM FIBER

OF FIRST LAYER] presents the stress calculated at the bottom extreme

fiber of the first layer under the center of the load. This is the
maximum tensile stress, hence, a design parameter for a rigid pavement.
Row three [title: DEFLECTIONS AT SURFACE UNDER LOAD] contains the deflections
at the surface under the center of the load in inches.

The manner in which rows one, two, and three are filled in is
as ﬁollows. Solution of the elastic layer equations (3 and 4) is contained
in the first column., This stress and deflection will be used to calculate
all the functionals except kl. Row one will be blank as it has no
meaning for the elastic layer solution.

If a value for the measured k is input (Format B, columns 31 to 40),
the traditional Westergaard solution for maximum stress and deflection
will be calculated,i.e., equations (1 and 2). These values will be in
column 2 of the tabular output (labeled: WESTERGAARD SINGLE TERM).

The results obtained by employing the kl functional are shown in
column 3 (labeled: SUBGRADE DISPLACEMENT FUNCTIONAL). kl is obtained by
stripping off the first layer of the soil/pavement system, loading it
with a uniform pressure of (P = 1 psi) uniformly distributed over a 30-inch

diameter circle. The resulting deflection is inverted to obtain the

1

modulus, kw. kl is used to calculate the stress, row 2, and deflection,

row 3. These responses are calculated using Westergaard equations (1 and 2).
Equations (1 and 2) were used for the sole purpose of producing answers

that would duplicate a hand calculation. To obtain a more accurate

solution replace the subroutines WSTRES with XACTST and WDELTA with

XACTDF (see Figure C-3. Substituting these subroutines, containing the
‘‘exact’’ Westergaard equations, will make little difference for the

‘‘typical’’ concrete pavement.
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The results obtained by employing the k; and ké functionals are shown
in columns 4 and 5, respectively (labeled: WESTERGAARD EXACT EQNS). k; is
defined as the modulus that will produce the same stress from the Westergaard
equation as that computed at the bottom of the first layer in the elastic
layer analysis. It provides a means for relating the elastic layer
solution to the Westergaard solution. This functional is calculated by:
(1) assuming a k;, (2) solving the ‘‘exact’’ Westergaard stress equation
with the assumed k;, (3) comparing Westergaard stress with elastic layer
stress, (4) if the same, end solution cycle; or if different, go to step
(M. k; is used to calculate the stress, row 2; row 3 1s inapplicable.
The stress shown is identical to the elastic layer response.

Functional ki, fifth column, is defined as the modulus that will
produce the same deflection from the Westergaard equation as that com-
puted at the surface of the elastic layer analysis. It provides a third
method of relating elastic layer analyses with those of Westergaard.

This functional is calculated by: (1) assuming a ki, (2) solving the
‘sexact’’ Westergaard deflection equation, (3) comparing the Westergaard
deflection with the elastic layer deflection, (4) if the same, stop; if
different, go to step (1) of the solution cycle. The deflection shown
is identical to the elastic layer response.

Columns 6 and 7 contain the functionals kz and kz, respectively
(labeled: WESTERGAARD 1 TERM EQNS). kz is solved by inverting equation
(2). k3 is solved by an iteration procedure similar to that used for
k; and ké. These functions were included in the table to provide a

measure of the difference between the ¢‘exact’’ and single term Wester-

gaard equations.
3. Program Organization

ELAST is written in FORTRAN IV and is approximately 1,000 cards
long. The code requires 11,000 decimal words to execute on a CDC 6600
and has been successfully run on the CDC 6600, UNIVAC 1110, and IBM 370
computers. Figure C-3 shows the program’s organizational structure. A

brief description of each subroutine follows.
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ELAST reads input and calls subroutines.

ELLAY solves equations (3 and 4) for o and 6.

WSTRES and WDELTA solve the single term Westergaard stress
and deflection equations (1 and 2). To compute the ¢‘exact?’
Westergaard o and 8, replace these routine with ones shown in
dashed boxes.

WESCON computes the constants used in the €‘exact’”’ Westergaard
equations.

KW2, KW3, KSt, KS2, and KW1, solve for the functions as
indicated by their name.

WSTRF sets some Westergaard constants.

BESSEL computes values for the Bessel functionms.

RCUR solves the recursive equations of the elasticity solution.
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99

ELAST
ELLAY WSTRES WDELTA WESCON KW1 Kw2 KW3 KS1 KS2
WSTRF ELLAY
WDELTA (The WSTRES (the
1 term Wester- 1 term Wester-
gaard Deflection) gaard stress)
BESSEL
3 OR i OR
S S—— —_—————
'r XACTDF 1 XACTST
| the “exact” | (the “exact” |
RCUR i Westergaard ! Westergaard |
lection: 1
IR I I o N
Figure C-3. Subroutine Organization for ELAST Program.
/"




LIST OF SYMBOLS

Peak deflection in first (top) pavement layer

Peak deflection in second pavement layer

Number of layers occurring in an elastic layer idealization
Pressure

Load radius

Young®s modulus

Young’s modulus for the nth pavement layer

Poisson’s ratio

Poisson’s ratio for the nth pavement layer

Layer thickness

Layer thickness for the nth pavement layer

Maximum tensile stress in first (top) pavement layer
Westergaard, subgrade stiffness parameter

Solution constants for the nth pavement layer (i=1,6)

Transform parameter derived from solution of elastic
layer idealization

Bessel function
Westergaard displacement functionals
Westergaard stress functionals

Coordinate directions for a cylindrical coordinate
system
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