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ABSTRACT

A driving point dynamic load non destructive teahde used to determine a structure’s first maiffhass and indirectly
the material's coefficient of elasticity. Suchyndmic test will be shown to be theoretically eqlént to a static load
destructive test that directly determines the doieffit of elasticity. Assuming linear, elastic dynic analysis is appropriate
then knowing the first modal stiffness from expegirtal modal data and a numerical model of the &traavith known
geometric dimensions, an exact solution for thdfment of elasticity can be determined when thegfiency equations are
available and depends on one elastic constant.sdllaéons for the coefficient of elasticity foritarm beams in axial
deformation, torsion and bending as a functiorhefftrst modal stiffness will be given.

INTRODUCTION

There are several methods to determine the cosfiicf elasticity of a pavement’s sub grade soihfrdynamic load non
destructive tests. The frequency sweep methodd&} the driving point frequency response to catedb the static
response of a pavement from a plate load test.frélj@ency sweep method uses a weighted average dfiving point
frequency response to determine the equivalerit seponse. This paper uses the concept of atirglthe response from
a dynamic test to the static response from a cdiorel test but uses the zero frequency respontieealynamic test to
compare to the static response of a conventiosal Results are shown for uniform beams but irfihére will be extended
to composite materials and in particular multidestc layered pavement systems.

DYNAMIC MODAL MODEL

The response of a multiple degree of freedom sysitesher forced harmonic vibration ([1],[2],[6]), g by the general
dynamic modal model is
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For the special case when there is only one hagrload at thedegree of freedom and the mode shapes are noealiz
with respect to that location of the load, tiggn=1forn=1,2,...,N and~; =0 for alld <>s and~; = F when d=s. The
driving point response is
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The driving point response can be written as time sfithe magnitudes and phases of the individualeno
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The driving point response can also be writtenatliyeas the total system magnitude and phase
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When the load is harmonic, the response is harnardcthe magnitude and phase of the response hagbations from the
individual modes. In theory, the magnitude of fleguency response at a frequency of zero correspionthe static
deflection due to a unit force. The zero frequersgponse [7] is defined as
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The zero frequency response is equivalent to Htee steflection (flexibility) under a unit load &f springs in series where
the spring constant¥ ,, n = 1,2,...N, are the modal spring constants. Sistem stiffness is simply the inverse of the zero

frequency response.
STATIC RESPONSE OF UNIFORM BEAM

The basic mechanical tension, compression, tosiohbending tests of uniform beams to determinedkedficient of
elasticity are based on the following equationstafic equilibrium [4].



Axial Tension/Compression
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3 Point Bending at mid span
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Poisson’s Ratio can be determined by the relation
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DYNAMIC RESPONSE OF UNIFORM BEAM IN BENDING

From the available frequency equation of a simplym®rted uniform beam bending at mid span ([1]§2),
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If the static response for a simply supported unifbeam bending under a static force at mid spaqusi to the zero
frequency response for a simply supported unifoemnt bending under a dynamic force at mid span then
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If the above equation is to be valid then must stimat
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With the aid of Fourier series, it can be showrt tha above is true.

Let f(x) = x*and expressed as an infinite series of the form
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SubstitutingX =0 and X = 71 into f (X) gives two equations
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Subtracting the (30) from the (31) has only valwben n is odd
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The static response is equal to the zero frequessponse of the simply supported uniform beam imdbegy at mid span and
can be expressed as a function of the first mddaiess
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And finally the coefficient of elasticity as a futian of the first modal stiffness is
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DYNAMIC RESPONSE OF UNIFORM BEAM IN AXIAL DEFORMATON

For axial deformation the available frequency eiguef[1],[2],[6]) for a beam fixed at x=0 and fraéx=L is
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Setting the static response equal to the zero émayresponse at x=L
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The following can also be shown to be true by usingrier series.
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The static response is equal to the zero frequegponse of the beam and can be expressed astiaffiusicthe first modal
stiffness
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And finally the coefficient of elasticity as a futran of the first modal stiffness is

_8LK,

E
n*A

42)

DYNAMIC RESPONSE OF UNIFORM BEAM IN TORSION



For torsion the frequency equation ([1],[2],[6]) fo cylindrical beam fixed at x=0 and free at xslsimilar to the axial
frequency equation
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Knowing E and G, Poisson’s ratio can be determined as
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DAMPING

After introducing viscous damping into the axialiatjons of motion [6], the coefficient of elasticis independent of the

rate of loading as determined by the dynamic t&ste damping coefficient determines the responsetalthe rate of
loading.
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So the modal damping coefficient is
C,=aM, +aK, ®2)

8, and &, should be constant for all modes if the above madedlid. &, is a property of the material ar@}, is a property
of the system.



For hysteretic damping, the coefficient of elasfits also independent of the rate of loading. ®again the damping
coefficient determines the response due to theofdteading.
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SQUARE PLATE IN BENDING

A simply supported uniform plate bending due t@ater load [5]
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At the center of the plate
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UNIFORM BEAM IN BENDING QUARTER SPAN

Previously the zero frequency response was notrdeted by the mode shapes being normalized witheresto the load
point. For the uniform beam when the mode shapea@malized with respect to the load point tHfaing are the

expected measurel , for the experimental modal data for mid span awmatigr span.
The general mode shape is
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The zero frequency response whep = X, = E
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When X, = Eand Xs = Z then the zero frequency response is
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When X; = X, = Z then the zero frequency response is
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Reciprocity is valid because the zero frequencgaase whenX; = Z and X, = — is equal to the zero frequency response
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The zero frequency response is

ERIMES
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From statics [4], the quarter span deformationtdufe load at the mid span is related to the mpah<lastic deformation.
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SUMMARY

The solutions for the coefficient of elasticity faniform beams in axial deformation, torsion anddirg as a function of the
first modal stiffness were presented. This enathlesletermination of the elastic properties ofami beams from
knowledge of the first modal stiffness. The firsbdal stiffness is assumed to be derived from patanestimation using
experimental modal data [3]. The experimental rhddéa can be from any dynamic test using a tinmealo or frequency
domain parameter estimation technique. After ohidng viscous damping into the equations of motiba coefficient of
elasticity remains constant but the dynamic resp@mslependent on two additional constants, anesf proportional
constant and a mass proportional constant. Tfieedts proportional constant is dependent on theniadand the mass
proportional constant is dependent on the system.
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