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ABSTRACT 

A driving point dynamic load non destructive test can be used to determine a structure’s first modal stiffness and indirectly 
the material’s coefficient of elasticity.  Such a dynamic test will be shown to be theoretically equivalent to a static load 
destructive test that directly determines the coefficient of elasticity.  Assuming linear, elastic dynamic analysis is appropriate 
then knowing the first modal stiffness from experimental modal data and a numerical model of the structure with known 
geometric dimensions, an exact solution for the coefficient of elasticity can be determined when the frequency equations are 
available and depends on one elastic constant.  The solutions for the coefficient of elasticity for uniform beams in axial 
deformation, torsion and bending as a function of the first modal stiffness will be given. 

INTRODUCTION 

There are several methods to determine the coefficient of elasticity of a pavement’s sub grade soil from dynamic load non 
destructive tests.  The frequency sweep method [8] uses the driving point frequency response to correlate to the static 
response of a pavement from a plate load test.  The frequency sweep method uses a weighted average of the driving point 
frequency response to determine the equivalent static response.  This paper uses the concept of correlating the response from 
a dynamic test to the static response from a conventional test but uses the zero frequency response of the dynamic test to 
compare to the static response of a conventional test.  Results are shown for uniform beams but in the future will be extended 
to composite materials and in particular multiple elastic layered pavement systems.  

DYNAMIC MODAL MODEL 

The response of a multiple degree of freedom system under forced harmonic vibration ([1],[2],[6]), given by the general 
dynamic modal model is 
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For the special case when there is only one harmonic load at the sth degree of freedom and the mode shapes are normalized 

with respect to that location of the load, thensnφ  = 1 for n = 1,2,…,N and dF  = 0 for all d <> s and dF  = F  when d=s.  The 

driving point response is 
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The driving point response can be written as the sum of the magnitudes and phases of the individual modes 
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The driving point response can also be written directly as the total system magnitude and phase 
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When the load is harmonic, the response is harmonic and the magnitude and phase of the response has contributions from the 
individual modes.  In theory, the magnitude of the frequency response at a frequency of zero corresponds to the static 
deflection due to a unit force.  The zero frequency response [7] is defined as 
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The zero frequency response is equivalent to the static deflection (flexibility) under a unit load of N springs in series where 

the spring constants, nK , n = 1,2,…N, are the modal spring constants.  The system stiffness is simply the inverse of the zero 

frequency response. 

STATIC RESPONSE OF UNIFORM BEAM 

The basic mechanical tension, compression, torsion and bending tests of uniform beams to determine the coefficient of 
elasticity are based on the following equations of static equilibrium [4]. 



Axial Tension/Compression 
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3 Point Bending at mid span 
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Poisson’s Ratio can be determined by the relation 
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DYNAMIC RESPONSE OF UNIFORM BEAM IN BENDING 

From the available frequency equation of a simply supported uniform beam bending at mid span ([1],[2],[6]) 
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If the static response for a simply supported uniform beam bending under a static force at mid span is equal to the zero 
frequency response for a simply supported uniform beam bending under a dynamic force at mid span then 
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If the above equation is to be valid then must show that 
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With the aid of Fourier series, it can be shown that the above is true. 
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Since 4x  is an even function then none of the sine terms can be present and after integrating (25) by parts 
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Substituting 0=x  and π=x  into )(xf gives two equations 
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Subtracting the (30) from the (31) has only values when n is odd 
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The static response is equal to the zero frequency response of the simply supported uniform beam in bending at mid span and 
can be expressed as a function of the first modal stiffness 
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And finally the coefficient of elasticity as a function of the first modal stiffness is 
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DYNAMIC RESPONSE OF UNIFORM BEAM IN AXIAL DEFORMATION 

For axial deformation the available frequency equation ([1],[2],[6]) for a beam fixed at x=0 and free at x=L is  

( )
2

22
2

4

12

mL

EAn

M

K

n

n
n

−== πω
      

)35(  

2

mL
M n =

        
)36(  

( )
L

EAn
K n 8

12 22 −= π
       

)37(  








 −=
L

x
nn 2

)12(sin
πφ       )38(  

Setting the static response equal to the zero frequency response at x=L 
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The following can also be shown to be true by using Fourier series.
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The static response is equal to the zero frequency response of the beam and can be expressed as a function of the first modal 
stiffness 
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And finally the coefficient of elasticity as a function of the first modal stiffness is 
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DYNAMIC RESPONSE OF UNIFORM BEAM IN TORSION 



For torsion the frequency equation ([1],[2],[6]) for a cylindrical beam fixed at x=0 and free at x=L is similar to the axial 
frequency equation 
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Knowing E  and G , Poisson’s ratio can be determined as 
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DAMPING 

After introducing viscous damping into the axial equations of motion [6], the coefficient of elasticity is independent of the 
rate of loading as determined by the dynamic test.  The damping coefficient determines the response due to the rate of 
loading. 
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So the modal damping coefficient is  
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0a  and 1a should be constant for all modes if the above model is valid.  1a  is a property of the material and 0a  is a property 

of the system. 



For hysteretic damping, the coefficient of elasticity is also independent of the rate of loading.  Once again the damping 
coefficient determines the response due to the rate of loading. 
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SQUARE PLATE IN BENDING 

A simply supported uniform plate bending due to a center load [5] 
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At the center of the plate 
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UNIFORM BEAM IN BENDING QUARTER SPAN 

Previously the zero frequency response was not determined by the mode shapes being normalized with respect to the load 
point.  For the uniform beam when the mode shapes are normalized with respect to the load point the following are the 

expected measured nK  for the experimental modal data for mid span and quarter span. 

The general mode shape is 
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Normalized when the load is at 
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The zero frequency response when 
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When 
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xs =   then the zero frequency response is 

∑
∞

=


































































1

2

2
sin

2
sin

4
sin

n

n

n

K

n

n

π

π

π

       

)61(  

 and includes modes where 0
4

sin <>






 πn
 

When 
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From statics [4], the quarter span elastic deformation is related to the mid span elastic deformation 
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Reciprocity is valid because the zero frequency response when 
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From statics [4], the quarter span deformation due to the load at the mid span is related to the mid span elastic deformation. 
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SUMMARY 

The solutions for the coefficient of elasticity for uniform beams in axial deformation, torsion and bending as a function of the 
first modal stiffness were presented.  This enables the determination of the elastic properties of uniform beams from 
knowledge of the first modal stiffness.  The first modal stiffness is assumed to be derived from parameter estimation using 
experimental modal data [3].  The experimental modal data can be from any dynamic test using a time domain or frequency 
domain parameter estimation technique.  After introducing viscous damping into the equations of motion, the coefficient of 
elasticity remains constant but the dynamic response is dependent on two additional constants, a stiffness proportional 
constant and a mass proportional constant.  The stiffness proportional constant is dependent on the material and the mass 
proportional constant is dependent on the system.   
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