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ABSTRACT

A driving point dynamic load non destructive teahde used to determine the modal stiffness, dagrgoid mass of a
structure. If the constitutive equations of videsé#city consist of a combination of time indepentelastic behavior and
time dependent viscous behavior and can be moasledcollection of spring-dashpot arrangements tiiemodal stiffness
can be used to determine the time independenicelstiavior and the modal damping to determindithe dependent
viscous behavior. Using a simple spring and daisimpgarallel model (Kelvin-Voigt), solutions folhé material properties
of uniform beams in axial deformation, torsion drehding will be given. For non-uniform beams, ¢festic properties can
be identified by the finite element method whiclused to derive the equilibrium equations. The ahatffness is used to
get the zero frequency response (equivalent sedjfponse) which determines a single point in tbeajlsystem flexibility
matrix. The identification becomes a problem imimiizing the error norm of the equilibrium equasorSeveral numerical
examples are presented, one of varying geometrpaaaf varying rigidity.

INTRODUCTION

There are several methods to determine the caaffiaf elasticity of a pavement’s sub grade soifrdynamic load non
destructive tests. The frequency sweep methodyde$ the driving point frequency response to taigeo the static
response of a pavement from a plate load test.fréj@ency sweep method uses a weighted average dfiving point
frequency response to determine the equivalerit seponse. A previous paper by this author ghittelated the uniform
beam response from a dynamic test to the stationse from a conventional test but uses the zeguéncy response of the
dynamic test to compare to the static responsecohaentional test. This paper shows that afteodtucing viscous
damping into the equations of motion, the coeffitief elasticity remains constant but the dynaragponse is dependent on
two additional constants, a stiffness proportiamaistant and a mass proportional constant. Tfirests proportional
constant is dependent on the material and the pragertional constant is dependent on the systésing the zero
frequency response of the dynamic test as the alguit/static response, static data system ideatidic methods are now
possible.

SIMPLE MODELS OF VISCOELASTIC BEHAVIOR

In the simplest models of viscoelastic behavitastic behavior is represented by a spring whiseaus behavior is
represented by a dashpot. In the Kelvin-Voight elptthe spring and dashpot are arranged in pasalgat under load, the
same strain applies to both elements and the resfsn
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For the creep test, the strain is found by soltiregordinary differential equation with the boundaondition that the stress
is constant for positive time.
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In the Maxwell model, the spring and dashpot arerayed in series so that under load, the samesstpgdies to both
elements and the response is

ds_lda o

@ Eat e ()

For the relaxation test, the stress is found byisglthe ordinary differential equation with theumalary condition that the
strain is constant for positive time.
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The relaxation time is
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For the generalized Kelvin-Voight model, where nplét parallel spring and dashpot are arrangedriesethe total strain is
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For the creep test,
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For the generalized Maxwell model, where multieéess of spring and dashpot are arranged in prtlietotal stress is

. C. .
Zai=2ci£— Flial (10)

The strain is
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For the relaxation test,
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More details are available in reference [4].

UNCOUPLED AXIAL EQUATIONS OF MOTION OF BEAM WITH V6COUS DAMPING

The equilibrium of a differential beam element kiah deformation is

F 4 Fieraard = [+ 50| 4 Faamping ¥ — Fosgornaad = 0 (13)
Finertia = m(x)i (14)
Faamping = c(x)u Generalized damping (15)
Let c(x) = tom(x) Mass proportional damping (16)
F =0A(x) = [u' + t;u']EA(x) Using Kelvin-Voight material model. a7

u(x, t) can be transformed from the geometric displacementdinates to the modal amplitudes or normal dinates.
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The®; (x) functions are orthogonal. Substituting the abegeation into the force equilibrium and multiplyibg @,,(x) and
integrating over the beam length gives the uncalipléal equations of motion of beam with viscoumgang.
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t, and t; should be constant for all modes if the modelkikdv

More details are available in reference [3].
UNCOUPLED TORSIONAL EQUATIONS OF MOTION OF BEAM WH VISCOUS DAMPING

The equilibrium of a differential beam elementansion is similar to axial deformation
aT
T+ Tinertialdx - [T + adx] + Tdamping dx — Texternaldx =0 (23)

Tinertiat = m(x)](x)g (24)

Taamping = ¢(x)8 Generalized damping (25)



Let c(x) = tom(x)J(x) Mass proportional damping (26)

T =1/(x) =[6'+t,0']G/(x) Using Kelvin-Voight material model. (27)
0(x,t) = ¥ 0;(x)8;(t) Normal coordinate transformation (28)
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UNCOUPLED FLEXURAL EQUATIONS OF MOTION OF BEAM WITH/ISCOUS DAMPING

The vertical force equilibrium of a differentiabffural beam element is

V = Viertiqdx — [17 + Z—de] ~ Vaamping 4% + Vexternardx = 0 (33)
Vinertiar = m(x)v (34)
Vaamping = c(x)v  Generalized damping (35)
Let c(x) = tym(x) Mass proportional damping (36)

The moment equilibrium of a differential flexursddim element is

i+ Vdx — [ + 22 dx| = 0 (37)

and ignoring rotational inertia
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Assuming normal strains vary linearly over the bezioss section and using the axial stress stréatiaoaship from the
Kelvin-Voight material model the moment curvatuse i

M =EI(x)[v" + t;v"] (39)
v(x, t) =Y 0;(x)V;(t) Normal coordinate transformation (40)

As with the axial deformation the uncoupled flexwequation of motion is

L
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DYNAMIC MODAL MODEL

The response of a multiple degree of freedom sysiaaher forced harmonic vibration ([2],[3],[9]), @& by the general
dynamic modal model is

N
N B R
n=1 Al
XS(t)_an—annHacn” (45)

n=1

For the special case when there is only one hamoail at the'Sdegree of freedom and the mode shapes are noemaliz
with respect to that location of the load, tiggn=1forn=1,2,...,N and~; =0 for alld <>s and~; = F when d=s. The

driving point response is

x(t)=H(w)Fe“ (46)
rm@:iHm@ (47)
H, (i) = L (48)
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The driving point response can be written as time sfithe magnitudes and phases of the individualeno

X(t) = ZN:|H 2 (i)e (49)
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The driving point response can also be writtenatliyeas the total system magnitude and phase

X(t) =|H (i) Fe'“® (52)
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When the load is harmonic, the response is harnardcthe magnitude and phase of the response hagbations from the
individual modes. In theory, the magnitude of fleguency response at a frequency of zero correspionthe static
deflection due to a unit force. The zero frequeresponse [10] is defined as
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The zero frequency response is equivalent to it steflection (flexibility) under a unit load df springs in series where
the spring constant¥ ., n = 1,2,...N, are the modal spring constants. Sistem stiffness is simply the inverse of the zero

frequency response.
STATIC RESPONSE OF UNIFORM BEAM

The basic mechanical tension, compression, torsiohbending tests of uniform beams to determinedkedficient of
elasticity are based on the following equationstafic equilibrium [7].

Axial Tension/Compression

W= FL (58)
EA

Torsion
TL

Jd=— (59)
GJ

3 Point Bending at mid span
FL®

w= (60)
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Poisson’s Ratio can be determined by the relation
E

v 1 (61)
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DYNAMIC RESPONSE OF UNIFORM BEAM IN BENDING

From the available frequency equation of a simplym®rted uniform beam bending at mid span ([2]$3),

“ = M, L*m (62)
M, = (63)
K = % (68
@ = sin(nij (65)
H O = ZKﬁ (66)

The static response is equal to the zero frequesgponse of the simply supported uniform beam mdbey at mid span and
can be expressed as a function of the first mddaiess [11]

L 7

67
48El 96K, 7

The coefficient of elasticity as a function of fimst modal stiffness is
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DYNAMIC RESPONSE OF UNIFORM BEAM IN AXIAL DEFORMATON

For axial deformation the available frequency eiguef[2],[3],[9]) for a beam fixed at x=0 and fraéx=L is
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The static response is equal to the zero frequezgponse of the beam and can be expressed astiaffiusicthe first modal

stiffness

.
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The coefficient of elasticity as a function of fimst modal stiffness is
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DYNAMIC RESPONSE OF UNIFORM BEAM IN TORSION

E

For torsion the frequency equation ([2],[3],[9]) f cylindrical beam fixed at x=0 and free at xslsimilar to the axial

frequency equation
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Knowing E and G, Poisson’s ratio can be determined as
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UNIFORM BEAM IN BENDING QUARTER SPAN

L L
When X; = —and X, = Z then the zero frequency response is
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When X; = X

L .
s = Z then the zero frequency response is
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From statics [7], the quarter span elastic defoionas related to the mid span elastic deformation
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Reciprocity is valid because the zero frequencpaoase whenX,; = Z and X, = E is equal to the zero frequency response
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The zero frequency response is
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From statics [7], the quarter span deformationtdufe load at the mid span is related to the pah<lastic deformation.
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EXPERIMENTAL MODAL ANALYSIS

From experimental modal analysis the frequency,lag) poles and residues can be estimated. Fremamped
frequencies and residues the zero frequency respramsbe determined. The partial fraction forrtheffrequency response
function for a single force at; and the response &t
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Setting the frequency to zero, it can be shown that

Ha@) = Y (L2 g A1) = 5 nln ©90)
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To get the stiffness proportional constant and rpasgortional constant use the following equati@ince there are usually
more modal frequencies than the 2 unknowns, theiealrequires the pseudo inverse.
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ELEMENT STIFFNESS IDENTIFICATION FROM EQUIVALENT SATIC TEST DATA

The procedure for element stiffness identificafiolfows that of [8] with a modification to use tkemplex variable semi-
analytical method instead of the finite differemsethod in approximating the derivatives of the #aity matrix.[5]

Using the zero frequency response as the equivstiatit response, the global experimental stiffmeaix can be
determined from inverting the flexibility matrix \ehe

anmdn
Ky

2
ux =x, =x4) = Z% and u(x = x; # x4) = (92)

Ke=ut (93)

The stiffness matrix derived from the finite elererethod matrix must be partitioned into four sudstmces.

[F] Kum KuuHU] (94)

Them subscript indicates the degrees of freedom wrephasent the measured force, stiffness and dispite Theu
subscript indicates the unmeasured degrees ofdneed he global analytical stiffness matrix is

K% = Kmm — KmuKu_l}Kum (95)

By adjusting the experimental and analytical s&fs matrices into vectors that match the unknowanpeters that are to be
identified and minimizing the error norm betweea ttvo vectors, an estimate for the parameters eanddle. Since the
analytical stiffness vector of unknown parametensdn linear, a first order Taylor series expansamsed.

a
k®(p + Ap) = k*(p) + s(p)Ap where s(p) = %k“(p) (96)
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Placing the values df(p)into the vectos(p).

J(&p) = [e(Ap)]"[e(Ap)] where [e(Ap)] = k® — k*(p + Ap) = k* — k(p) — s(p)Ap (98)

a/(Ap)
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Setting = 0 the relationship s(p)Ap = Ak(p) can be derived where Ak(p) = k¢ — k®(p). (99)

An iterative procedure for parameter identificat@an now be used.

p'*t = p' + Ap where Ap = [s(p)Ts(p)] ™ s(p)T Ak (p) (100)

The partial derivatives can be solved analyticdihjte differences, or by complex variable semalgtical method. The
CVSAM has several numerical advantages and a theisdription follows.

A Taylor series expansion of a function in the ctarplane is
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Grouping the real and imaginary parts, the firsteorderivative can be obtained as
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Note the calculation of the first order derivatd@es not involve the subtraction of two numbers asidg the above
approximation avoids the subtractive cancellatioors that plague the finite difference approach.

A 2 NODE ISOTROPIC BEAM ELEMENT

Considering the well known 2 node, 6 degree ofdome isotropic beam element, the analytic stiffmreasrix for a cantilever
beam element is as follows, where the free enthis@and the fixed end at x=L and there are 2 elegyof freedom which
are considered to be measured, the axial and #éatix=0 and where the unknown parameter is théficeent of elasticity.
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Using CVSAM, the first derivative approximation finis element is equal to the analytic first detiive
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After some manipulation,
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A 2 NODE ORTHOTROPIC BEAM ELEMENT

Considering the 2 node, 6 degree of freedom opatrbeam element [1], the analytic stiffness mdwr a cantilever beam
element is as follows, where the free end is atad the fixed end at x=L and there are 2 degrefse@dom which are
considered to be measured, the axial and flextivat@and where the unknown parameter is the fingfe.



The stress strain relations for an orthotropic mialtén plane stress are as follows

ou

& = sx = a110'x + a120-y + alﬁaxy (109)
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ay = &y = 1305 1 4220y + Ap60xy o
Ju dv
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m = cosf and n = sinf

Si1 = i and S;, = e and S,, = i and Sg = i (112)
E, E, E, Giz
Ay = Syym* + (2S;, + Sg)m?n? + Sy,nt (113)
Ay = Sp(m* +n*) + (S11 + Sp5 — Seg)m?n? (114)
ayy = Syn* + (281, + Seg)m?n? + S,,m* (115)
A6 = (2511 — 2815 — Sge)nm® — (2S5, — 251, — Seg)n®>m (116)
A6 = (2811 — 2815 — Sgg)mn> — (2S,, — 2515, — Seg)m>n (117)
Age = 2(2S11 + 25,5, — 48, — Sge)n?m? — Sgo(n* + m*) (118)

The deflection equation in the symmetry axis oftibam, y=0 is

Pa Pay, L3
v=——2(x%—30%x + 2I3) and v(x = 0) = ———— (119)
I 6 I 3
When 6 = 0° (—0)—PL3 d when 6 = 90° (—0)—PL3 120)
en =0%v(x = _3E11an when 0 = ,v(x = _3E21 (
4 0
La
Knm =" 15 (121)
L3aq,
r 0Ky 0K,
Kym = [O Lzall] and K,,,, = K, and SE - 3E (122)
41 ., Lay
i = Lo, and K;; = v (123)
Using CVSAM requires evaluating
da,; _ imag[S;1cos*(0 + iAB) + (251, + Sge)cos? (6 + iAB)sin® (6 + iAB) + S,,sin* (6 + iAF)] (124)
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SUMMARY

When the frequency equation is known, the elastip@rties of uniform beams can be determined fraowkedge of the

first modal stiffness. If the frequency equatiemodt known then the elastic properties can bermdted by inverse
identification methods using finite elements witle zero frequency response as the equivalent stgponse. The modal
stiffness is derived from parameter estimation gigxperimental modal data [6]. The experimentatiahalata can be from
any dynamic test using a time domain or frequertopaln parameter estimation technique. After inticadg viscous
damping into the equations of motion, the coeffitief elasticity remains constant but the dynaragponse is dependent on
two additional constants, a stiffness proportiamaistant and a mass proportional constant. Tfirests proportional
constant is dependent on the material and the pragertional constant is dependent on the sysféhe two constants can
be estimated by the pseudo inverse of a matrixcbasgéhe modal frequency and damping.
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